# Manicotti a sfere e gruppi di guida







Il marchio SKF è più forte che mai, a tutto vantaggio del cliente.

Pur mantenendo la propria leadership mondiale nella produzione di cuscinetti, i nuovi sviluppi tecnologici, l'assistenza per i prodotti ed i servizi offerti hanno trasformato la SKF in un fornitore orientato completamente a soluzioni di valore aggiunto per i clienti.

Queste soluzioni consentono ai clienti di aumentare la propria produttività, non soltanto grazie a prodotti innovativi specifici per ogni applicazione, ma anche a strumenti di simulazione avanzata per il design, servizi globali di consulenza, efficienti programmi di manutenzione degli impianti e tecniche di gestione magazzino d'avanguardia sul mercato.

Il marchio SKF significa ancora il meglio dei cuscinetti volventi, ma oggi significa anche molto di più.

SKF – the knowledge engineering company

### Sommario

- 3 Prelubrificazione standard di fabbrica SKF
- 4 Tabella dei prodotti
- 8 Manicotti a sfere, serie ISO 1
- 9 LBBR
- 10 Manicotti a strisciamento, serie ISO 1
- 11 LPBR
- 12 Gruppi di guida assiale, serie ISO 1
- 14 LUHR / LUJR
- 15 LTBR
- 16 LTDR
- 17 LQBR
- 18 Manicotti a sfere, serie ISO 3
- 20 LBCR
- 21 LBCD
- 22 LBCT
- 23 LBHT
- 24 LBCF
- 27 Manicotti a strisciamento, serie ISO 3
- 28 LPAR / LPAT
- 29 Gruppi di guida assiale, serie ISO 3
- 31 LUCR/LUCD
- 32 LUCS / LUCE
- 33 LUCT/LUCF
- 34 LUCT ... BH
- 35 LUND
- 36 LUNE
- 37 LUNF
- 38 LVCR
- 39 LTCD
- 40 LTCF
- 41 LQCR / LQCD
- 42 LQCF
- 43 Supporti per alberi
- 44 LSCS
- 45 LSNS / LSHS
- 46 LEAS / LEBS
- 47 LRCB / LRCC
- 48 Tavole lineari quadro senza motorizzazione
- 49 LZBU
- 51 LZAU
- 52 Alberi di precisione

### Prelubrificazione standard di fabbrica SKF

SKF ora offre manicotti a sfere prelubrificati di serie in fabbrica. I cuscinetti prelubrificati fanno risparmiare tempo di assemblaggio in quanto non è necessario ingrassarli. Il riempimento di grasso calibrato in fabbrica aumenta l'affidabilità del cuscinetto. L'uso di cuscinetti prelubrificati riduce inoltre i costi di manutenzione

I gruppi di guida ed i manicotti a sfere SKF per diametri albero di 6 mm o maggiori sono prelubrificati in fabbrica <sup>1)</sup> come soluzione standard <sup>2)</sup>. Grazie alla riserva di grasso integrato e all'uso di tenute a doppio labbro (2LS) SKF, la maggioranza delle applicazioni non richiede un'ulteriore lubrificazione in quanto l'intervallo teorico di rilubrificazione è maggiore della durata del cuscinetto.

I manicotti a sfere sono lubrificati con il grasso ad alte prestazioni SKF tipo LGEP2.

Per ulteriori informazioni sulla prelubrificazione di fabbrica è possibile rivolgersi al nostro centro di assistenza tecnica o consultare il manuale tecnico per gruppi di guida e manicotti a sfere (numero d'ordine 6402 EN, scaricabile al sito www.linearmotion.skf.com).

#### Tenute

La tenuta a doppio labbro garantisce un esercizio senza interventi di manutenzione per la durata dei cuscinetti prelubrificati in condizioni di esercizio normali. La tenuta integrale è stata progettata appositamente per i manicotti a sfere. I labbri di tenuta mantengono un contatto completo con l'albero e, allo stesso tempo offrono una soluzione di tenuta superiore anche in caso di impiego con l'albero per i manicotti a sfere autoallineanti della serie LBC. Le tenute sono state inoltre ottimizzate per ridurre l'attrito.

#### Lubrificante

LGEP2 è un grasso per cuscinetti resistente alle alte pressioni di SKF utilizzabile per un'ampia gamma di applicazioni del settore industriale e automobilistico. Il componente principale è olio minerale/sapone di litio, mentre gli additivi garantiscono una buona resistenza alla corrosione e caratteristiche anti-usura. Su richiesta sono disponibili grassi speciali per l'industria alimentare, ambienti asettici e ad alta temperatura.



La tenuta a doppio labbro

<sup>1)</sup> Da luglio 2007

<sup>&</sup>lt;sup>2)</sup> Manicotti a sfere senza prelubrificazione di fabbrica e sostanza protettiva possono essere ordinati indicando il suffisso "/VT808", ad es. LBCR 20 A-2LS/VT808

<sup>&</sup>lt;sup>3)</sup> Prima del montaggio, i manicotti a sfere non prelubrificati devono essere lubrificati adeguatamente

Questo catalogo comprende manicotti a sfere, manicotti a strisciamento e accessori SKF che possono essere utilizzati per la costruzione di sistemi di guida lineari semplici ed economici per un'ampia gamma di applicazioni. Nel caso in cui le condizioni di carico, ad esempio, siano tali da impedire l'uso di questi cuscinetti e unità, SKF offre ulteriori prodotti e sistemi di guida lineare. Per maggiori informazioni relative a questi ulteriori prodotti e sistemi, rivolgetevi al vostro rappresentante locale SKF.

Questo documento comprende manicotti a sfere della serie 1 e 3, prodotti in conformità a ISO 10285 e manicotti a strisciamento con le stesse dimensioni.

## Manicotti a sfere e gruppi di guida serie 1

I manicotti a sfere (LBBR) della serie 1 sono compatti e facili da montare. Questi manicotti con o senza tenute sono disponibili in una versione standard e in una versione resistente alla corrosione. I gruppi di guida assiale di questa serie, che comprendono cuscinetto e alloggiamento, sono disponibili come unità singole o tandem. Le unità tandem comprendono le versioni duo e quadro.

## Manicotti a sfere e gruppi di guida serie 3

I manicotti a sfere della serie 3 comprendono l'esecuzione avanzata cilindrica LBCR e LBCT, l'esecuzione autoallineante LBCD e LBCF e l'esecuzione LBHT con capacità di carico particolarmente elevata. Tutti i manicotti della serie ISO 3 sono di-

sponibili nella versione standard e resistente alla corrosione, con una tenuta a doppio labbro integrale per garantire un esercizio senza necessità di manutenzione in condizioni normali. Questi manicotti a sfere sono intercambiabili con tutti i cuscinetti SKF della serie 3 precedenti.

La maggior parte dei gruppi di guida assiale della serie 3 è dotata come standard di manicotti a sfere autoallineanti per compensare un eventuale disallineamento. Sono disponibili anche altre esecuzioni riportate nelle rispettive tabelle.

# Manicotti a strisciamento e gruppi di guida serie 3

I manicotti a strisciamento LPAR e LPAT sono compresi nella gamma dimensionale della serie 3.

#### Manicotti a sfere

| Tipo | Dimensioni (mm) | Carico max (N)<br>dinamico / statico | Commenti         | Serie ISO | Pagina |
|------|-----------------|--------------------------------------|------------------|-----------|--------|
| LBBR | 3 - 50          | 6 950 / 6 300                        |                  | 1         | 9      |
| LBCR | 5 - 80          | 37 500 / 32 000                      |                  | 3         | 20     |
| LBCD | 12 - 50         | 11 200 / 6 950                       | autoallineante * | 3         | 21     |
| LBCT | 12 - 80         | 37 500 / 32 000                      |                  | 3         | 22     |
| LBCF | 12 - 50         | 11 200 / 6 950                       | autoallineante * | 3         | 24     |
| LBHT | 20 - 50         | 17 300 / 17 000                      |                  | 3         | 23     |

<sup>\*</sup> Compensazione automatica di disallineamenti dell'albero fino a max. ±30 minuti d'arco.

### Manicotti a strisciamento

|                 | Tipo    | Dimensioni (mm) | Carico max (N)<br>dinamico / statico | Commenti                                 | Serie ISO | Pagina |
|-----------------|---------|-----------------|--------------------------------------|------------------------------------------|-----------|--------|
|                 | LPBR    | 12 - 50         | 10 800 / 38 000                      |                                          | 1         | 11     |
|                 | LPAR    | 5 - 80          | 29 000 / 100 000                     |                                          | 3         | 28     |
|                 | LPAT    | 12 - 80         | 29 000 / 100 000                     |                                          | 3         | 28     |
| Gruppi di guida | assiale |                 |                                      |                                          |           |        |
|                 | LUHR    | 12 - 50         | 6 950 / 6 300                        | cuscinetto LBBR                          | 1         | 14     |
| 0               | LUJR    | 12 - 50         | 6 950 / 6 300                        | con tenute per albero<br>cuscinetto LBBR | 1         | 14     |
|                 | LTBR    | 12 - 50         | 11 400 / 12 700                      | tandem<br>cuscinetto LBBR                | 1         | 15     |
|                 | LTDR    | 12 - 50         | 11 400 / 12 700                      | duo<br>cuscinetto LBBR                   | 1         | 16     |
|                 | LQBR    | 12 - 50         | 18 600 / 25 500                      | quadro<br>cuscinetto LBBR                | 1         | 17     |
|                 | LUCR    | 8, 60, 80       | 37 500 / 32 000                      | cuscinetto LBCR                          | 3         | 31     |
|                 | LUCD    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCD autoallineante *         | 3         | 31     |

<sup>\*</sup> Compensazione automatica di disallineamenti dell'albero fino a max. ±30 minuti d'arco.

### Gruppi di guida assiale

|    | Tipo    | Dimensioni (mm) | Carico max (N)<br>dinamico / statico | Commenti                                      | Serie ISO | Pagina |
|----|---------|-----------------|--------------------------------------|-----------------------------------------------|-----------|--------|
|    | LUCS    | 8, 60, 80       | 37 500 / 32 000                      | cuscinetto LBCR                               | 3         | 32     |
|    | LUCE    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCD<br>autoallineante *           | 3         | 32     |
|    | LUCT    | 60, 80          | 37 500 / 32 000                      | cuscinetto LBCT                               | 3         | 33     |
|    | LUCF    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCF<br>autoallineante *           | 3         | 33     |
|    | LUCT BH | 20 - 50         | 17 300 / 17 000                      | cuscinetto LBHT                               | 3         | 34     |
| 0  | LUND    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCD autoallineante *              | 3         | 35     |
| 00 | LUNE    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCD<br>autoallineante *           | 3         | 36     |
| 90 | LUNF    | 12 - 50         | 11 200 / 6 950                       | cuscinetto LBCF<br>autoallineante *           | 3         | 37     |
|    | LVCR    | 12 - 80         | 37 500 / 32 000                      | cuscinetto LBCR                               | 3         | 38     |
| •  | LTCD    | 12 - 50         | 18 300 / 14 000                      | tandem<br>cuscinetto LBCD<br>autoallineante * | 3         | 39     |
| 90 | LTCF    | 12 - 50         | 18 300 / 14 000                      | tandem<br>cuscinetto LBCF<br>autoallineante * | 3         | 40     |

<sup>\*</sup> Compensazione automatica di disallineamenti dell'albero fino a max. ±30 minuti d'arco.

### Gruppi di guida assiale

| Gruppi di guida a | ssiale           |                 |                                      |                                                                      |           |        |
|-------------------|------------------|-----------------|--------------------------------------|----------------------------------------------------------------------|-----------|--------|
|                   | Tipo             | Dimensioni (mm) | Carico max (N)<br>dinamico / statico | Commenti                                                             | Serie ISO | Pagina |
|                   | LQCR             | 8               | 1 290 / 1 420                        | quadro<br>cuscinetto LBCR                                            | 3         | 41     |
| 00.               | LQCD             | 12 - 50         | 30 000 / 28 000                      | quadro<br>cuscinetto LBCD<br>autoallineante *                        | 3         | 41     |
| 9 9               | LQCF             | 12 - 50         | 30 000 / 28 000                      | quadro<br>cuscinetto LBCF<br>autoallineante *                        | 3         | 42     |
| Supporti di estre | mità             |                 |                                      |                                                                      |           |        |
|                   | LSCS             | 8 - 80          |                                      |                                                                      | 1/3       | 44     |
| 9                 | LSHS<br>LSNS     | 12 - 50         |                                      | LSHS ISO 1<br>LSNS ISO 3                                             | 1/3       | 45     |
| 4                 | LEBS A           | 12 - 50         |                                      | tandem<br>LEBS A ISO 1                                               | 1/3       | 46     |
|                   | LEAS A/B         | 8 - 50          |                                      | LEAS A/B ISO 3                                                       |           |        |
| Alberi e supporti | per alberi       |                 |                                      |                                                                      |           |        |
|                   | LJ               | 3 - 80          |                                      |                                                                      | 1/3       | 53     |
|                   | LRCB<br>LRCC     | 12 - 80         |                                      | LRCB (fori)<br>LRCC (senza fori)                                     | 3         | 47     |
| Tavole lineari    |                  |                 |                                      |                                                                      |           |        |
|                   | LZAU             | 12 - 50         |                                      | quadro<br>"albero supportato"<br>cuscinetto LBCF                     | 3         | 51     |
|                   | LZBU A<br>LZBU B | 8 - 50          |                                      | quadro  "A" = "unità mobile"  "B" = "alberi mobili"  cuscinetto LBCD | 3<br>50   | 49     |

<sup>\*</sup> Compensazione automatica di disallineamenti dell'albero fino a max. ±30 minuti d'arco.

#### Manicotti a sfere LBBR

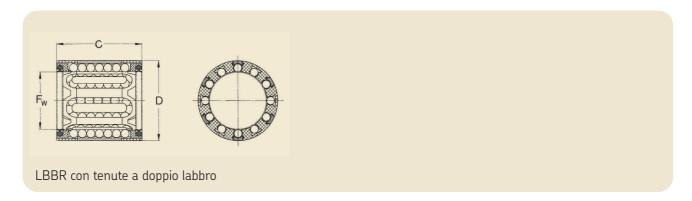
Il manicotto a sfere LBBR brevettato da SKF combina una gabbia in plastica con piste di rotolamento in acciaio temprato nelle quali scorrono le sfere. Il cuscinetto è conforme alla serie dimensionale 1 secondo ISO 10285.

Le piste di rotolamento dell'LBBR sono concepite per utilizzare completamente l'intera lunghezza della zona di carico e aumentare così la portata e la durata di servizio del cuscinetto.

La gabbia in plastica è stata riprogettata per offrire il massimo delle prestazioni. Le ricircolazioni di sfere sono concepite perché non vi sia resistenza della gabbia all'ingresso e uscita delle stesse. La gabbia migliorata consente inoltre di accogliere sfere di dimensioni maggiori per offrire una capacità di carico superiore e una durata di servizio maggiore.

La versione a tenuta è dotata di guarnizioni a doppio labbro integrali. Queste tenute dispongono di un labbro interno per mantenere il lubrificante all'interno del cuscinetto; il labbro esterno invece impedisce che eventuali impurità possano penetrare all'interno del cuscinetto.

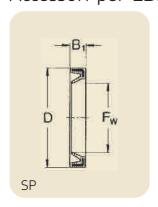
La versione senza tenute è dotata di schermi non striscianti per proteggere il cuscinetto da particelle di dimensioni maggiori. I manicotti a sfere LBBR non richiedono il fissaggio assiale nell'alloggiamento a condizione che il foro dell'alloggiamento sia dimensionato correttamente.


### Versione in acciaio inox

I manicotti a sfere LBBR sono disponibili anche con sfere e piste di scorrimento in acciaio inox adatte ad ambienti di lavoro umidi o corrosivi. La versione in acciaio inox è identificata dal suffisso HV6 nell'appellativo, ad es. LBBR 16-2LS/HV6. Se utilizzato in combinazione con alberi SKF in acciaio inox, è possibile creare un sistema di guida completamente inossidabile.



### Manicotti a sfere - LBBR


- con settori portanti a ricircolo di sfere



| Dimer   | nsioni |      | N. di<br>circuiti | Valori ge<br>di carico |         | Massa  | Appellativi          |                          |                          |                              |
|---------|--------|------|-------------------|------------------------|---------|--------|----------------------|--------------------------|--------------------------|------------------------------|
|         |        |      | di sfere          |                        |         |        | Manicotti a s        | sfere                    | acciaio inox             |                              |
|         |        |      |                   | din.                   | stat.   |        | esecuzione           | con 2 tenute             | esecuzione               | con 2 tenute                 |
| $F_{w}$ | D      | С    |                   | С                      | $C_{o}$ |        | standard             | a doppio labbro          | standard                 | a doppio labbro              |
| mm      |        |      | _                 | N                      |         | kg     | _                    |                          |                          |                              |
| 3       | 7      | 10   | 4                 | 60                     | 44      | 0,0007 | LBBR 3 <sup>2)</sup> | LBBR 3-2LS <sup>2)</sup> | LBBR 3/HV6 <sup>2)</sup> | LBBR 3-2LS/HV6 <sup>2)</sup> |
| 4       | 8      | 12   | 4                 | 75                     | 60      | 0,001  | LBBR 4 <sup>2)</sup> | LBBR 4-2LS <sup>2)</sup> | LBBR 4/HV6 <sup>2)</sup> | LBBR 4-2LS/HV6 <sup>2)</sup> |
| 5       | 10     | 15   | 4                 | 170                    | 129     | 0,002  | LBBR 5 <sup>2)</sup> | LBBR 5-2LS <sup>2)</sup> | LBBR 5/HV6 <sup>2)</sup> | LBBR 5-2LS/HV6 <sup>2)</sup> |
| 6       | 12     | 221) | 4                 | 335                    | 270     | 0,006  | LBBR 6A              | LBBR 6A-2LS              | LBBR 6A/HV6              | LBBR 6A-2LS/HV6              |
| 8       | 15     | 24   | 4                 | 490                    | 355     | 0,007  | LBBR 8               | LBBR 8-2LS               | LBBR 8/HV6               | LBBR 8-2LS/HV6               |
| 10      | 17     | 26   | 5                 | 585                    | 415     | 0,011  | LBBR 10              | LBBR 10-2LS              | LBBR 10/HV6              | LBBR 10-2LS/HV6              |
| 12      | 19     | 28   | 5                 | 695                    | 510     | 0,012  | LBBR 12              | LBBR 12-2LS              | LBBR 12/HV6              | LBBR 12-2LS/HV6              |
| 14      | 21     | 28   | 5                 | 710                    | 530     | 0,013  | LBBR 14              | LBBR 14-2LS              | LBBR 14/HV6              | LBBR 14-2LS/HV6              |
| 16      | 24     | 30   | 5                 | 930                    | 630     | 0,018  | LBBR 16              | LBBR 16-2LS              | LBBR 16/HV6              | LBBR 16-2LS/HV6              |
| 20      | 28     | 30   | 6                 | 1 160                  | 800     | 0,021  | LBBR 20              | LBBR 20-2LS              | LBBR 20/HV6              | LBBR 20-2LS/HV6              |
| 25      | 35     | 40   | 7                 | 2 120                  | 1 560   | 0,047  | LBBR 25              | LBBR 25-2LS              | LBBR 25/HV6              | LBBR 25-2LS/HV6              |
| 30      | 40     | 50   | 8                 | 3 150                  | 2 700   | 0,070  | LBBR 30              | LBBR 30-2LS              | LBBR 30/HV6              | LBBR 30-2LS/HV6              |
| 40      | 52     | 60   | 8                 | 5 500                  | 4 500   | 0,130  | LBBR 40              | LBBR 40-2LS              | LBBR 40/HV6              | LBBR 40-2LS/HV6              |
| 50      | 62     | 70   | 9                 | 6 950                  | 6 300   | 0,18   | LBBR 50              | LBBR 50-2LS              | LBBR 50/HV6              | LBBR 50-2LS/HV6              |

La tolleranza del diametro esterno dei manicotti a sfere è tale da non richiedere un fissaggio assiale addizionale se vengono installati in un foro con tolleranza J7 o J6.

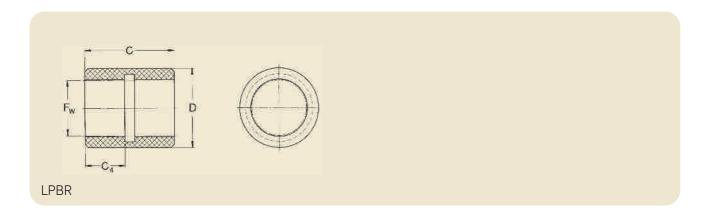
## Accessori per LBBR (tenute per alberi)



| Tenute :<br>Dimens | •  | adatte | Appellativi |
|--------------------|----|--------|-------------|
| $F_{\rm w}$        | D  | $B_1$  |             |
| mm                 | _  |        |             |
| 6                  | 12 | 2      | SP-6x12x2   |
| 8                  | 15 | 3      | SP-8x15x3   |
| 10                 | 17 | 3      | SP-10x17x3  |
| 12                 | 19 | 3      | SP-12x19x3  |
| 14                 | 21 | 3      | SP-14x21x3  |
| 16                 | 24 | 3      | SP-16x24x3  |
| 20                 | 28 | 4      | SP-20x28x4  |

| Tenute<br>Dimens | speciali<br>sioni | Appellativi |            |
|------------------|-------------------|-------------|------------|
| $F_{\rm w}$      | D                 | $B_1$       |            |
| mm               | _                 |             |            |
| 25               | 35                | 4           | SP-25x35x4 |
| 30               | 40                | 4           | SP-30x40x4 |
| 40               | 52                | 5           | SP-40x52x5 |
| 50               | 62                | 5           | SP-50x62x5 |

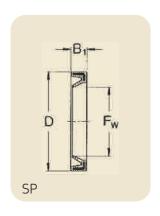
 $<sup>^{\</sup>rm 1)} La$  quota 22 non corrisponde alla serie 1 della norma ISO 10285.  $^{\rm 2)} Non prelubrificato in fabbrica$ 


I manicotti a strisciamento LPBR, con le stesse dimensioni dei manicotti a sfere LBBR, sono realizzati in PAS-LX (poliossimetilene copolimero) con uno speciale polietilene per garantire elevate caratteristiche di scorrimento esenti da stick-slip. In condizioni normali questi manicotti a strisciamento sono autolubrificanti e richiedono interventi minimi di manutenzione. Dispongono di un'elevata portata statica e sono resistenti ai carichi d'urto.

SKF raccomanda di applicare un leggero strato di lubrificante durante l'installazione per migliorare le prestazioni durante il rodaggio anche se i cuscinetti funzionano in seguito "a secco".

I manicotti a strisciamento LPBR sono concepiti per applicazioni nelle quali sono presenti carichi d'urto elevati e/o vibrazioni o comunque se il cuscinetto è sottoposto ad elevate accelerazioni e velocità in assenza di carico. In queste condizioni operative, i manicotti a strisciamento presentano una durata maggiore rispetto ai manicotti a sfere. Tuttavia, bisogna tenere conto di un maggior attrito.




- esecuzione chiusa

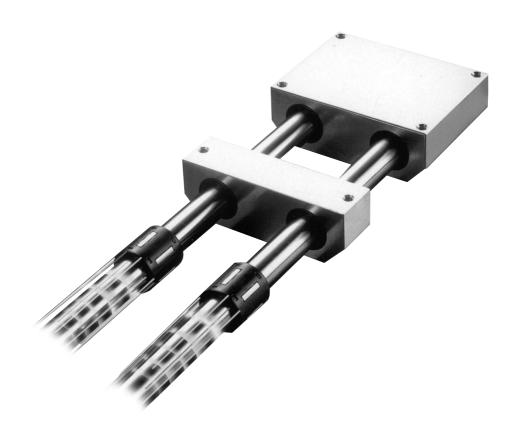


| Dime           | nsioni     |    |                | Valori genera | ali di carico |                | Massa | Appellativo     |
|----------------|------------|----|----------------|---------------|---------------|----------------|-------|-----------------|
|                |            |    |                | din. a        | , ,           | stat.          |       | Manicotto       |
|                |            |    |                | 0,1 m/s       | 4 m/s         |                |       | a strisciamento |
| F <sub>w</sub> | D<br>-0,07 | С  | C <sub>4</sub> | С             | С             | C <sub>o</sub> |       |                 |
| mm             |            |    |                | N             |               |                | kg    | _               |
| 12             | 19,19      | 28 | 10             | 965           | 24            | 3 350          | 0,006 | LPBR 12         |
| 14             | 21,21      | 28 | 12             | 1 370         | 34            | 4 750          | 0,007 | LPBR 14         |
| 16             | 24,23      | 30 | 12             | 1 530         | 38            | 5 400          | 0,009 | LPBR 16         |
| 20             | 28,24      | 30 | 13             | 2 080         | 52            | 7 350          | 0,011 | LPBR 20         |
| 25             | 35,25      | 40 | 17             | 3 400         | 85            | 12 000         | 0,024 | LPBR 25         |
| 30             | 40,27      | 50 | 20             | 4 800         | 120           | 17 000         | 0,033 | LPBR 30         |
| 40             | 52,32      | 60 | 24             | 7 650         | 193           | 27 000         | 0,063 | LPBR 40         |
| 50             | 62,35      | 70 | 27             | 10 800        | 270           | 38 000         | 0,088 | LPBR 50         |

La tolleranza del diametro esterno dei manicotti a strisciamento è tale da non richiedere un fissaggio assiale addizionale se vengono installati in un foro con tolleranza J7 o J6.

## Accessori per LPBR (tenute per alberi)




| Tenute<br>Dimens | speciali<br>sioni | Appellativi |            |
|------------------|-------------------|-------------|------------|
| $F_w$            | D                 | $B_1$       |            |
| mm               | _                 |             |            |
| 12               | 19                | 3           | SP-12x19x3 |
| 14               | 21                | 3           | SP-14x21x3 |
| 16               | 24                | 3           | SP-16x24x3 |
| 20               | 28                | 4           | SP-20x28x4 |

| Tenute<br>Dimen | speciali<br>sioni | adatte | Appellativi |
|-----------------|-------------------|--------|-------------|
| $F_{w}$         | D                 | $B_1$  |             |
| mm              | _                 |        |             |
| 25              | 35                | 4      | SP-25x35x4  |
| 30              | 40                | 4      | SP-30x40x4  |
| 40              | 52                | 5      | SP-40x52x5  |
| 50              | 62                | 5      | SP-50x62x5  |

I gruppi di guida assiale che comprendono cuscinetti chiusi della serie ISO 1 sono disponibili per applicazioni in cui l'albero è supportato solo su ciascuna estremità. Questi gruppi di guida sono economici ed estremamente compatti e possono supportare carichi superiori a 25 000 N (ad es. LQBR 50-2LS; vedi anche pagina 17).

Il disallineamento angolare massimo ammesso è 15 minuti d'arco. In condizioni di esercizio normali e se installati con tenute a doppio labbro, i cuscinetti LBBR consentono l'esercizio di questi gruppi senza rilubrificazione (vedi pagina 3).

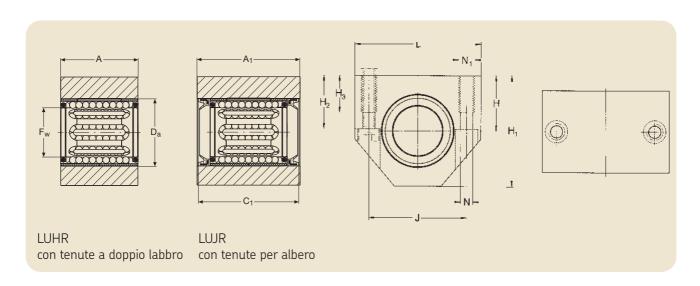
Per ambienti corrosivi o umidi, SKF consiglia l'uso di alberi in acciaio inox e alloggiamenti in alluminio con manicotti a sfere in acciaio inox, ad es. LBBR 20-2LS/HV6, oppure alloggiamenti in alluminio dotati di manicotti a strisciamento. Sono disponibili alberi tagliati su misura. Per maggiori informazioni, consultare il capitolo "Alberi di precisione", pagina 52.



I gruppi di guida assiale LUHR/LUJR sono costituiti da un alloggiamento in alluminio estruso e da un manicotto a sfere compatto LBBR o da un manicotto a strisciamento LPBR di uguali dimensioni.

L'esecuzione LUHR, per diametri di albero compresi tra 12 e 50 mm, è disponibile di serie con manicotti a sfere LBBR con o senza tenute integrate o con manicotti a strisciamento LPBR (appellativo LUHR ... PB).

In caso di ambienti particolarmente contaminati, sono disponibili gruppi di guida assiale estesi LUJR. Tali unità incorporano manicotti a sfere LBBR e due tenute per alberi di tipo SP. I gruppi di guida assiale LUHR e LUJR non possono essere rilubrificati.


I gruppi di guida assiale tandem LTBR sono costituiti da un alloggiamento in alluminio estruso monoblocco e da due manicotti a sfere LBBR montati uno dietro l'altro. Queste unità dispongono di cuscinetti a tenuta di serie e non sono rilubrificabili. Sono particolarmente adatti per tavole o slitte di qualsiasi larghezza.

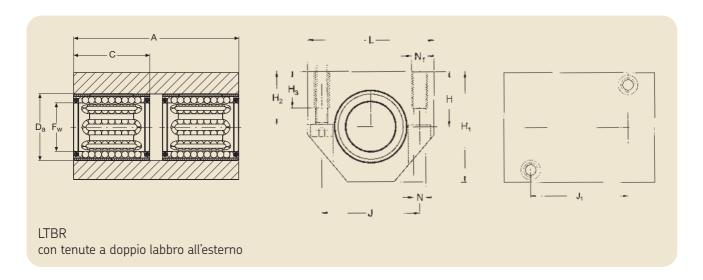
I gruppi di guida assiale duo LTDR sono caratterizzati da un alloggiamento in alluminio che contiene due manicotti a sfere LBBR-2LS in parallelo. Lo spazio tra i due cuscinetti e la configurazione duo consente di semplificare l'installazione di un azionamento lineare.

I gruppi di guida assiale quadro LQBR comprendono quattro (4) manicotti a sfere LBBR all'interno di un alloggiamento in alluminio a tenuta. La configurazione duo e lo spazio tra i cuscinetti consente l'installazione di un azionamento lineare. I gruppi di guida assiale duo e quadro basati su manicotti a sfere LBBR possono essere utilizzati per creare configurazioni di tavole semplici e compatte. Per i supporti di estremità adatti (LEBS), vedi pagina 46.



# Gruppi di guida assiale – LUHR/LUJR - con alloggiamento chiuso e manicotti a sfere LBBR



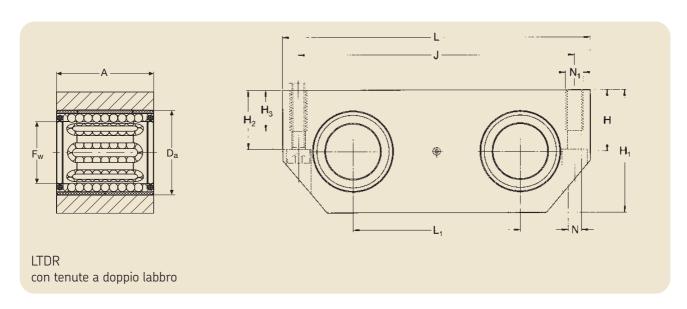

| Dime           | nsion | i              |       |                |            |                |                |                |     |    |                 |                              | Valori<br>gener |                      | Mass | a    | Appellativ         | <i>i</i> i                |                      |
|----------------|-------|----------------|-------|----------------|------------|----------------|----------------|----------------|-----|----|-----------------|------------------------------|-----------------|----------------------|------|------|--------------------|---------------------------|----------------------|
|                |       |                |       |                |            |                |                |                |     |    |                 |                              | di car<br>din.  | i <b>co</b><br>stat. |      |      | Gruppo di<br>senza | guida assiale<br>con      | con                  |
| F <sub>w</sub> | Α     | A <sub>1</sub> | $C_1$ | D <sub>a</sub> | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | L   | J  | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | С               | $C_0$                |      |      | tenuta             | tenuta a<br>doppio labbro | tenute per<br>albero |
| mm             |       |                |       |                |            |                |                |                |     |    |                 | _                            | Ν               |                      | kg   |      |                    |                           |                      |
| 12             | 28    | 35             | 34    | 19             | 17         | 33             | 16             | 11             | 40  | 29 | 4,3             | M 5                          | 695             | 510                  | 0,08 | 0,10 | LUHR 12            | LUHR 12-2LS               | LUJR 12              |
| 16             | 30    | 37             | 36    | 24             | 19         | 38             | 18             | 11             | 45  | 34 | 4,3             | M 5                          | 930             | 630                  | 0,10 | 0,12 | LUHR 16            | LUHR 16-2LS               | LUJR 16              |
| 20             | 30    | 39             | 38    | 28             | 23         | 45             | 22             | 13             | 53  | 40 | 5,3             | M 6                          | 1 160           | 800                  | 0,14 | 0,18 | LUHR 20            | LUHR 20-2LS               | LUJR 20              |
| 25             | 40    | 49             | 48    | 35             | 27         | 54             | 26             | 18             | 62  | 48 | 6,6             | M 8                          | 2 120           | 1 560                | 0,25 | 0,30 | LUHR 25            | LUHR 25-2LS               | LUJR 25              |
| 30             | 50    | 59             | 58    | 40             | 30         | 60             | 29             | 18             | 67  | 53 | 6,6             | M 8                          | 3 150           | 2 700                | 0,37 | 0,44 | LUHR 30            | LUHR 30-2LS               | LUJR 30              |
| 40             | 60    | 71             | 70    | 52             | 39         | 76             | 38             | 22             | 87  | 69 | 8,4             | M 10                         | 5 500           | 4 500                | 0,74 | 0,86 | LUHR 40            | LUHR 40-2LS               | LUJR 40              |
| 50             | 70    | 81             | 80    | 62             | 47         | 92             | 46             | 26             | 103 | 82 | 10,5            | M 12                         | 6 950           | 6 300                | 1,19 | 1,37 | LUHR 50            | LUHR 50-2LS               | LUJR 50              |

Per supporti di estremità adatti a questi gruppi di guida, appellativo LSHS, vedi pagina 45.

I gruppi di guida assiale tipo LUHR sono disponibili anche con manicotti a strisciamento LPBR. Appellativi: ad es. LUHR 20 PB.

<sup>&</sup>lt;sup>1)</sup> Per viti a esagono incassato a norma DIN 912 / ISO 4762.

# Gruppi di guida assiale tandem – LTBR - con alloggiamento chiuso e manicotti a sfere LBBR

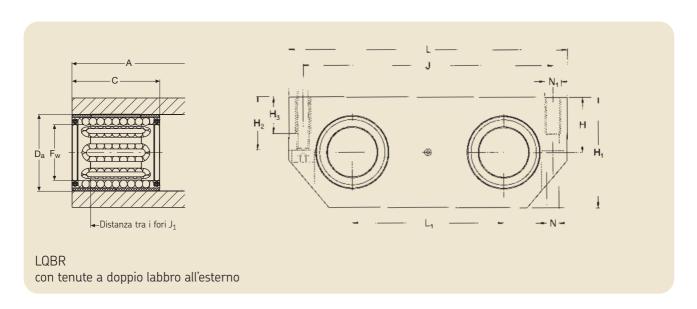



| Dime    | nsioni |    |         |    |                      |       |       |    |       |     | Valori ge<br>di carico |                              | Massa  | Appellativi |      |                                       |
|---------|--------|----|---------|----|----------------------|-------|-------|----|-------|-----|------------------------|------------------------------|--------|-------------|------|---------------------------------------|
|         |        |    |         |    |                      |       |       |    |       |     |                        |                              | din.   | stat.       |      | Gruppi di guida<br>assiale con tenute |
| $F_{w}$ | Α      | С  | $D_{a}$ | Н  | H <sub>1</sub> ±0,01 | $H_2$ | $H_3$ | J  | $J_1$ | L   | N <sup>1)</sup>        | N <sub>1</sub> <sup>1)</sup> | С      | $C_0$       |      | a doppio labbro                       |
| mm      |        |    |         |    |                      |       |       |    |       |     |                        | _                            | N      |             | kg   |                                       |
| 12      | 60     | 28 | 19      | 17 | 33                   | 16    | 11    | 29 | 35    | 40  | 4,3                    | M 5                          | 1 140  | 1 020       | 0,17 | LTBR 12-2LS                           |
| 16      | 65     | 30 | 24      | 19 | 38                   | 18    | 11    | 34 | 40    | 45  | 4,3                    | M 5                          | 1 530  | 1 270       | 0,22 | LTBR 16-2LS                           |
| 20      | 65     | 30 | 28      | 23 | 45                   | 22    | 13    | 40 | 45    | 53  | 5,3                    | M 6                          | 1 900  | 1 600       | 0,31 | LTBR 20-2LS                           |
| 25      | 85     | 40 | 35      | 27 | 54                   | 26    | 18    | 48 | 55    | 62  | 6,6                    | M 8                          | 3 450  | 3 150       | 0,54 | LTBR 25-2LS                           |
| 30      | 105    | 50 | 40      | 30 | 60                   | 29    | 18    | 53 | 70    | 67  | 6,6                    | M 8                          | 5 200  | 5 400       | 0,80 | LTBR 30-2LS                           |
| 40      | 125    | 60 | 52      | 39 | 76                   | 38    | 22    | 69 | 85    | 87  | 8,4                    | M 10                         | 9 000  | 9 000       | 1,57 | LTBR 40-2LS                           |
| 50      | 145    | 70 | 62      | 47 | 92                   | 46    | 26    | 82 | 100   | 103 | 10,5                   | M 12                         | 11 400 | 12 700      | 2,51 | LTBR 50-2LS                           |

Per supporti di estremità adatti a questi gruppi di guida, appellativo LSHS, vedi pagina 45.

<sup>&</sup>lt;sup>1)</sup> Per viti a esagono incassato a norma DIN 912 / ISO 4762.

# Gruppi di guida assiale duo – LTDR - con alloggiamento chiuso e manicotto a sfere LBBR




| Dime        | nsioni |         |            |       |       |                |     |     |                |                 |                              | Valori gen<br>di carico | erali  | Massa | <b>Appellativi</b><br>Gruppi di guida |
|-------------|--------|---------|------------|-------|-------|----------------|-----|-----|----------------|-----------------|------------------------------|-------------------------|--------|-------|---------------------------------------|
|             |        |         |            |       |       |                |     |     |                |                 |                              | din.                    | stat.  |       | assiale con tenute<br>a doppio labbro |
| $F_{\rm w}$ | Α      | $D_{a}$ | H<br>±0,01 | $H_1$ | $H_2$ | H <sub>3</sub> | J   | L   | L <sub>1</sub> | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | С                       | $C_0$  |       | α ασρρίο ιαββίο                       |
| mm          |        |         |            |       |       |                |     |     |                |                 | _                            | N                       |        | kg    | _                                     |
| 12          | 28     | 19      | 15         | 30    | 14    | 11             | 69  | 80  | 40             | 4,3             | M 5                          | 1 140                   | 1 020  | 0,15  | LTDR 12-2LS                           |
| 16          | 30     | 24      | 17,5       | 35    | 16,5  | 11             | 86  | 96  | 52             | 4,3             | M 5                          | 1 530                   | 1 270  | 0,22  | LTDR 16-2LS                           |
| 20          | 30     | 28      | 20         | 40    | 19    | 13             | 103 | 115 | 63             | 5,3             | M 6                          | 1 900                   | 1 600  | 0,30  | LTDR 20-2LS                           |
| 25          | 40     | 35      | 25         | 50    | 24    | 18             | 123 | 136 | 75             | 6,6             | M 8                          | 3 450                   | 3 150  | 0,58  | LTDR 25-2LS                           |
| 30          | 50     | 40      | 28         | 56    | 27    | 18             | 133 | 146 | 80             | 6,6             | M 8                          | 5 200                   | 5 400  | 0,85  | LTDR 30-2LS                           |
| 40          | 60     | 52      | 35         | 70    | 34    | 22             | 166 | 184 | 97             | 8,4             | M 10                         | 9 000                   | 9 000  | 1,56  | LTDR 40-2LS                           |
| 50          | 70     | 62      | 40         | 80    | 39    | 26             | 189 | 210 | 107            | 10,5            | M 12                         | 11 400                  | 12 700 | 2,21  | LTDR 50-2LS                           |

Per supporti di estremità adatti a questi gruppi di guida, appellativo LEBS ... A, vedi pagina 46.

<sup>&</sup>lt;sup>1)</sup>Per viti a esagono incassato a norma DIN 912 / ISO 4762 al centro (0,5 A) del gruppo di guida assiale.

# Gruppi di guida assiale quadro – LQBR - con alloggiamento chiuso e manicotto a sfere LBBR



| Dime        | nsioni |    |         |                   |       |                |       |     |       |     |       |                 |                              | Valori ger<br>di carico | nerali | Massa | <b>Appellativi</b><br>Gruppi di guida |
|-------------|--------|----|---------|-------------------|-------|----------------|-------|-----|-------|-----|-------|-----------------|------------------------------|-------------------------|--------|-------|---------------------------------------|
|             |        |    |         |                   |       |                |       |     |       |     |       |                 |                              | din.                    | stat.  |       | assiale con<br>tenute a               |
| $F_{\rm w}$ | Α      | С  | $D_{a}$ | <b>H</b><br>±0,01 | $H_1$ | H <sub>2</sub> | $H_3$ | J   | $J_1$ | L   | $L_1$ | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | С                       | $C_0$  |       | doppio labbro                         |
| mm          |        |    |         |                   |       |                |       |     |       |     |       |                 | _                            | N                       |        | kg    | _                                     |
| 12          | 70     | 28 | 19      | 15                | 30    | 14             | 11    | 69  | 59    | 80  | 40    | 4,3             | M 5                          | 1 860                   | 2 040  | 0,38  | LQBR 12-2LS                           |
| 16          | 80     | 30 | 24      | 17,5              | 35    | 16,5           | 11    | 86  | 70    | 96  | 52    | 4,3             | M 5                          | 2 500                   | 2 550  | 0,57  | LQBR 16-2LS                           |
| 20          | 85     | 30 | 28      | 20                | 40    | 19             | 13    | 103 | 73    | 115 | 63    | 5,3             | M 6                          | 3 100                   | 3 200  | 0,82  | LQBR 20-2LS                           |
| 25          | 100    | 40 | 35      | 25                | 50    | 24             | 18    | 123 | 87    | 136 | 75    | 6,6             | M 8                          | 5 600                   | 6 300  | 1,43  | LQBR 25-2LS                           |
| 30          | 130    | 50 | 40      | 28                | 56    | 27             | 18    | 133 | 117   | 146 | 80    | 6,6             | M 8                          | 8 500                   | 10 800 | 2,15  | LQBR 30-2LS                           |
| 40          | 150    | 60 | 52      | 35                | 70    | 34             | 22    | 166 | 132   | 184 | 97    | 8,4             | M 10                         | 14 600                  | 18 000 | 3,83  | LQBR 40-2LS                           |
| 50          | 175    | 70 | 62      | 40                | 80    | 39             | 26    | 189 | 154   | 210 | 107   | 10,5            | M 12                         | 18 600                  | 25 500 | 5,40  | LQBR 50-2LS                           |

Per supporti di estremità adatti a questi gruppi di guida, appellativo LEBS ... A, vedi pagina 46.



<sup>&</sup>lt;sup>1)</sup>Per 4 viti a esagono incassato a norma DIN 912 / ISO 4762.

I manicotti a sfere LBC, con la loro elevata capacità di carico, sono disponibili per diametri di alberi compresi tra 5 e 80 mm. Come per gli altri manicotti a sfere SKF, è possibile scegliere tra tenute e schermi di protezione. I manicotti a sfere LBC da 5 e 8 mm, inseriti completamente all'interno del rispettivo alloggiamento, sono autoportanti e non richiedono, in condizioni di esercizio normali, un bloccaggio assiale addizionale.

Tutti i manicotti a sfere LBC sono concepiti generalmente per la lubrificazione a grasso. Le dimensioni comprese tra 12 e 80 mm presentano gabbie con un foro radiale passante per l'applicazione di un nipplo di ingrassaggio che fornisce un bloccaggio longitudinale e assiale. Il grasso può essere applicato direttamente all'albero o al cuscinetto tramite questo foro. Per la rilubrificazione dei manicotti a sfere LBHT, l'alloggiamento deve essere provvisto di un canale di distribuzione del grasso nel foro o nell'alloggiamento. Il grasso viene quindi forzato sulla pista tra le piastre di carico. Le informazioni sulla posizione di questi fori di raccordo e nippli di ingrassaggio sono riportate alle pagine 25 e 26.

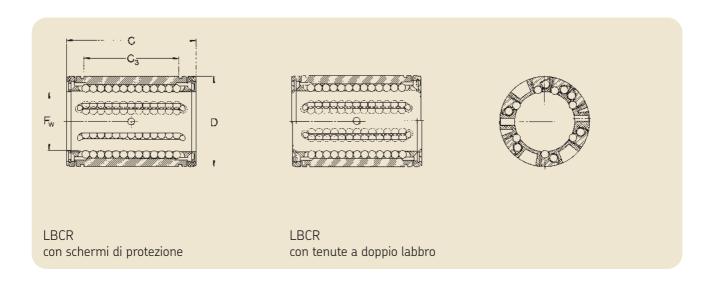
#### Versione in acciaio inox

I manicotti a sfere LBC sono disponibili anche con sfere e piste di scorrimento in acciaio inox adatte ad ambienti di lavoro umidi o corrosivi. La versione in acciaio inox è identificata dall'aggiunta del suffisso HV6 all'appellativo: ad es. LBCR 16-2LS/HV6. Se utilizzato in combinazione con alberi SKF in acciaio inox, è possibile creare un sistema di guida completamente inossidabile.

I manicotti a sfere LBCR sono costituiti da una gabbia, da piste di scorrimento per la guida delle sfere e da tenute o schermi. Grazie alla lunghezza estremamente elevata della corsa e all'osculazione delle piste lavorate, sono in grado di sostenere carichi pesanti.

I manicotti a sfere LBCR, grazie all'ottimizzazione delle piste di scorrimento e della posizione per garantire la massima capacità di carico, possono essere montati in alloggiamenti chiusi o regolabili. In caso di montaggio in alloggiamento chiuso, la tolleranza del diametro inscritto del set di sfere e quindi la distanza di esercizio è determinata dalla tolleranza del foro dell'alloggiamento. In caso di montaggio in alloggiamenti aperti, le guide lineari possono essere regolate per fornire la distanza di esercizio o il precarico in funzione delle esigenze dell'applicazione. I manicotti a sfere LBCR devono essere bloccati in direzione assiale, ad esempio mediante il nipplo di ingrassaggio o una spina di fissaggio.




I manicotti a sfere LBCD sono una variante dell'esecuzione LBCR. La caratteristica principale di guesto cuscinetto è di essere autoallineante, ciò che consente di compensare un'oscillazione dell'intero cuscinetto per un angolo di ±30 minuti d'arco. Questa caratteristica consente la compensazione di disallineamenti che possono essere provocati da imprecisioni di installazione o produzione (diametro del foro dell'alloggiamento) o da una inflessione notevole dell'albero non supportato. La caratteristica autoallineante non può tuttavia compensare i difetti di parallelismo di due alberi in un gruppo. La gabbia, le tenute e gli schermi sono stati ottimizzati per consentire l'autoallineamento in modo che il cuscinetto e, in particolare, le tenute o gli schermi restino concentrici rispetto all'albero.

Tutte le altre caratteristiche dei manicotti a sfere LBCR sono altresì valide per l'esecuzione autoallineante LBCD. I manicotti a sfere LBCD devono essere sempre fissati saldamente in direzione assiale. I manicotti a sfere LBCT e LBHT sono utilizzati per applicazioni in cui sono richiesti diversi supporti per alberi oppure un supporto continuo per impedire l'inflessione dell'albero. A causa dell'esecuzione aperta del cuscinetto LBCT, è stata eliminata una pista di scorrimento. Tuttavia, ciò non influisce significativamente sulla sua capacità di carico. Le piste di rotolamento dell'LBHT tuttavia sono state ottimizzate in modo che ne sia presente lo stesso numero dell'esecuzione chiusa del cuscinetto.

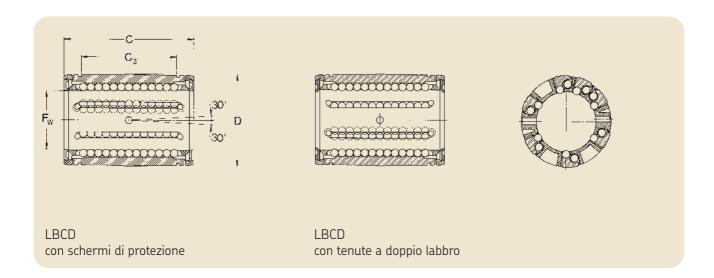
Sia l'LBCT e l'LBHT sono disponibili per diametri di albero compresi tra 20 a 50 mm. Diversamente da altri manicotti a sfere in esecuzione aperta, questi cuscinetti comprendono uno spallamento nella gabbia su ciascun lato dell'apertura che funge da tenuta. I manicotti a sfere LBCT/LBHT in esecuzione aperta devono essere sempre fissati per impedire movimenti assiali e radiali.

I manicotti a sfere LBCF sono una versione autoallineante dell'esecuzione LBCT. Questi cuscinetti sono disponibili in dimensioni comprese tra 12 e 50 mm. I manicotti a sfere LBCF devono essere sempre fissati per impedire movimenti assiali e radiali.

- esecuzione chiusa



| Dimens         | sioni |     |                | N. di circuiti<br>di sfere | Valori ger<br>di carico | ıerali         | Massa | <b>Appellativi</b><br>Manicotto a sfe | ere con                   |
|----------------|-------|-----|----------------|----------------------------|-------------------------|----------------|-------|---------------------------------------|---------------------------|
| _              | 5     |     |                |                            | din.                    | stat.          |       | 2 schermi                             | 2 tenute a doppio         |
| F <sub>w</sub> | D     | L   | C <sub>3</sub> |                            | C                       | C <sub>o</sub> |       |                                       | labbro                    |
| mm             |       |     |                | _                          | N                       |                | kg    |                                       |                           |
| 5              | 12    | 22  | 12             | 4                          | 280                     | 210            | 0,005 | LBCR 5 <sup>1)</sup>                  | LBCR 5- 2LS <sup>1)</sup> |
| 8              | 16    | 25  | 14             | 4                          | 490                     | 355            | 0,009 | LBCR 8                                | LBCR 8- 2LS               |
| 12             | 22    | 32  | 20             | 6                          | 1 160                   | 980            | 0,016 | LBCR 12 A                             | LBCR 12 A-2LS             |
| 16             | 26    | 36  | 22             | 6                          | 1 500                   | 1 290          | 0,021 | LBCR 16 A                             | LBCR 16 A-2LS             |
| 20             | 32    | 45  | 28             | 7                          | 2 240                   | 2 040          | 0,043 | LBCR 20 A                             | LBCR 20 A-2LS             |
| 25             | 40    | 58  | 40             | 7                          | 3 350                   | 3 350          | 0,085 | LBCR 25 A                             | LBCR 25 A-2LS             |
| 30             | 47    | 68  | 48             | 7                          | 5 600                   | 5 700          | 0,13  | LBCR 30 A                             | LBCR 30 A-2LS             |
| 40             | 62    | 80  | 56             | 7                          | 9 000                   | 8 150          | 0,26  | LBCR 40 A                             | LBCR 40 A-2LS             |
| 50             | 75    | 100 | 72             | 7                          | 13 400                  | 12 200         | 0,46  | LBCR 50 A                             | LBCR 50 A-2LS             |
| 60             | 90    | 125 | 95             | 7                          | 20 400                  | 18 000         | 0,82  | LBCR 60 A                             | LBCR 60 A-2LS             |
| 80             | 120   | 165 | 125            | 7                          | 37 500                  | 32 000         | 1,9   | LBCR 80 A                             | LBCR 80 A-2LS             |


Su richiesta questi cuscinetti sono disponibili nella versione in acciaio inox. Appellativo: ad es. LBCR 20 A-2LS/HV6

Su richiesta sono disponibili manicotti a sfere con una tenuta.

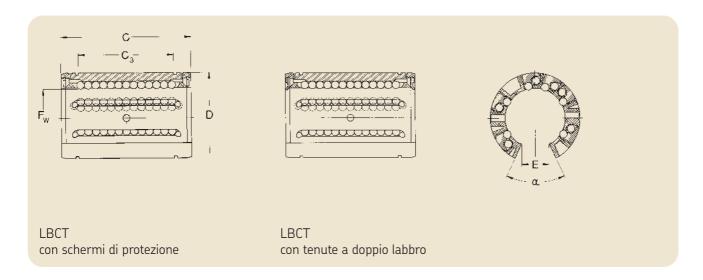
<sup>&</sup>lt;sup>1)</sup>Non prelubrificato in fabbrica Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26.

## Manicotti a sfere – LBCD

- autoallineanti e con esecuzione chiusa



| Dimens      | sioni |     |       | N. di circuiti<br>di sfere | Valori gene<br>carico | rali di                 | Massa | <b>Appellativi</b><br>Manicotti a sf | ere con                  |
|-------------|-------|-----|-------|----------------------------|-----------------------|-------------------------|-------|--------------------------------------|--------------------------|
| $F_{\rm w}$ | D     | С   | $C_3$ |                            | din.<br>C             | stat.<br>C <sub>o</sub> |       | 2 schermi                            | 2 tenute a doppio labbro |
| mm          |       |     |       | _                          | N                     |                         | kg    |                                      |                          |
| 12          | 22    | 32  | 20    | 6                          | 1 080                 | 815                     | 0,015 | LBCD 12 A                            | LBCD 12 A-2LS            |
| 16          | 26    | 36  | 22    | 6                          | 1 320                 | 865                     | 0,020 | LBCD 16 A                            | LBCD 16 A-2LS            |
| 20          | 32    | 45  | 28    | 7                          | 2 000                 | 1 370                   | 0,042 | LBCD 20 A                            | LBCD 20 A-2LS            |
| 25          | 40    | 58  | 40    | 7                          | 2 900                 | 2 040                   | 0,083 | LBCD 25 A                            | LBCD 25 A-2LS            |
| 30          | 47    | 68  | 48    | 7                          | 4 650                 | 3 250                   | 0,13  | LBCD 30 A                            | LBCD 30 A-2LS            |
| 40          | 62    | 80  | 56    | 7                          | 7 800                 | 5 200                   | 0,26  | LBCD 40 A                            | LBCD 40 A-2LS            |
| 50          | 75    | 100 | 72    | 7                          | 11 200                | 6 950                   | 0,44  | LBCD 50 A                            | LBCD 50 A-2LS            |


Su richiesta questi cuscinetti sono disponibili nella versione in acciaio inox. Appellativo: ad es. LBCD 20 A-2LS/HV6

Su richiesta sono disponibili manicotti a sfere con una tenuta.

Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26. Anelli di ritegno a norma DIN 471.

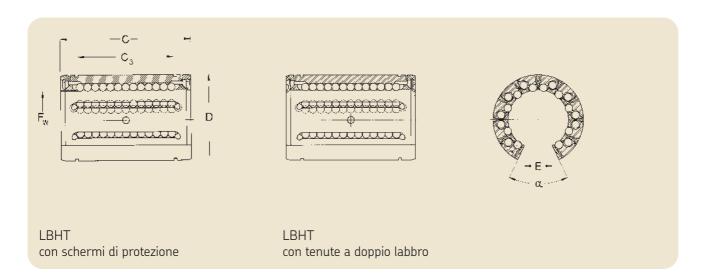
### Manicotti a sfere - LBCT

- esecuzione aperta



| ioni |                            |                                                        |                                                                                              |                                                                                                                                                     | N. di                                                                                                                                                                                 | Valori ge                                                                                                                                                                                                                                                                                                                                                                                                                              | nerali                                                | Massa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Appellativi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|----------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                            |                                                        |                                                                                              |                                                                                                                                                     | circuiti                                                                                                                                                                              | di carico                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Manicotto a sf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ere con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                            |                                                        |                                                                                              |                                                                                                                                                     | di sfere                                                                                                                                                                              | din.                                                                                                                                                                                                                                                                                                                                                                                                                                   | stat.                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 schermi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 tenute a doppio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D    | С                          | $C_3$                                                  | E <sup>1)</sup>                                                                              | α                                                                                                                                                   |                                                                                                                                                                                       | С                                                                                                                                                                                                                                                                                                                                                                                                                                      | $C_0$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | labbro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                            |                                                        |                                                                                              | gradi                                                                                                                                               | _                                                                                                                                                                                     | N                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22   | 32                         | 20                                                     | 7,6                                                                                          | 78                                                                                                                                                  | 5                                                                                                                                                                                     | 1 160                                                                                                                                                                                                                                                                                                                                                                                                                                  | 980                                                   | 0,013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LBCT 12 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 12 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 26   | 36                         | 22                                                     | 10,4                                                                                         | 78                                                                                                                                                  | 5                                                                                                                                                                                     | 1 500                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 290                                                 | 0,017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LBCT 16 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 16 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 32   | 45                         | 28                                                     | 10,8                                                                                         | 60                                                                                                                                                  | 6                                                                                                                                                                                     | 2 240                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 040                                                 | 0,036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LBCT 20 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 20 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 40   | 58                         | 40                                                     | 13,2                                                                                         | 60                                                                                                                                                  | 6                                                                                                                                                                                     | 3 350                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3 350                                                 | 0,071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LBCT 25 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 25 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 47   | 68                         | 48                                                     | 14,2                                                                                         | 50                                                                                                                                                  | 6                                                                                                                                                                                     | 5 600                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 700                                                 | 0,114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LBCT 30 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 30 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 62   | 80                         | 56                                                     | 18,7                                                                                         | 50                                                                                                                                                  | 6                                                                                                                                                                                     | 9 000                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 150                                                 | 0,23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LBCT 40 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 40 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 75   | 100                        | 72                                                     | 23,6                                                                                         | 50                                                                                                                                                  | 6                                                                                                                                                                                     | 13 400                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 200                                                | 0,39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LBCT 50 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 50 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 90   | 125                        | 95                                                     | 29,6                                                                                         | 54                                                                                                                                                  | 6                                                                                                                                                                                     | 20 400                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 000                                                | 0,72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LBCT 60 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 60 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 120  | 165                        | 125                                                    | 38,4                                                                                         | 54                                                                                                                                                  | 6                                                                                                                                                                                     | 37 500                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 000                                                | 1,67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LBCT 80 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LBCT 80 A-2LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | D  22 26 32 40 47 62 75 90 | D C  22 32 26 36 32 45 40 58 47 68 62 80 75 100 90 125 | D C C <sub>3</sub> 22 32 20 26 36 22 32 45 28 40 58 40 47 68 48 62 80 56 75 100 72 90 125 95 | D C C <sub>3</sub> E <sup>1)</sup> 22 32 20 7,6 26 36 22 10,4 32 45 28 10,8 40 58 40 13,2 47 68 48 14,2 62 80 56 18,7 75 100 72 23,6 90 125 95 29,6 | D C C <sub>3</sub> E <sup>1)</sup> α  gradi  22 32 20 7,6 78 26 36 22 10,4 78 32 45 28 10,8 60 40 58 40 13,2 60 47 68 48 14,2 50 62 80 56 18,7 50 75 100 72 23,6 50 90 125 95 29,6 54 | D     C     C <sub>3</sub> E <sup>3</sup> α       gradi     —       22     32     20     7,6     78     5       26     36     22     10,4     78     5       32     45     28     10,8     60     6       40     58     40     13,2     60     6       47     68     48     14,2     50     6       62     80     56     18,7     50     6       75     100     72     23,6     50     6       90     125     95     29,6     54     6 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | D         C         C <sub>3</sub> E <sup>1</sup> α         circuiti di sfere din.         di carico din.         stat.           D         C         C <sub>3</sub> E <sup>1</sup> α         N           22         32         20         7,6         78         5         1 160         980           26         36         22         10,4         78         5         1 500         1 290           32         45         28         10,8         60         6         2 240         2 040           40         58         40         13,2         60         6         3 350         3 350           47         68         48         14,2         50         6         5 600         5 700           62         80         56         18,7         50         6         9 000         8 150           75         100         72         23,6         50         6         13 400         12 200           90         125         95         29,6         54         6         20 400         18 000 | D         C         C3         E¹)         α         circuiti di sfere din.         stat. C         stat. C         c         C0         C0           22         32         20         7,6         78         5         1 160         980         0,013           26         36         22         10,4         78         5         1 500         1 290         0,017           32         45         28         10,8         60         6         2 240         2 040         0,036           40         58         40         13,2         60         6         3 350         3 350         0,071           47         68         48         14,2         50         6         5 600         5 700         0,114           62         80         56         18,7         50         6         9 000         8 150         0,23           75         100         72         23,6         50         6         13 400         12 200         0,39           90         125         95         29,6         54         6         20 400         18 000         0,72 | D         C         C <sub>3</sub> E <sup>3</sup> α         circuiti di sfere din. stat. C         Stat. C         Manicotto a sf. 2 schermi           22         32         20         7,6         78         5         1 160         980         0,013         LBCT 12 A           26         36         22         10,4         78         5         1 500         1 290         0,017         LBCT 16 A           32         45         28         10,8         60         6         2 240         2 040         0,036         LBCT 20 A           40         58         40         13,2         60         6         3 350         3 350         0,071         LBCT 25 A           47         68         48         14,2         50         6         5 600         5 700         0,114         LBCT 30 A           62         80         56         18,7         50         6         9 000         8 150         0,23         LBCT 40 A           75         100         72         23,6         50         6         13 400         12 200         0,39         LBCT 50 A           90         125         95         29,6         54         6         20 400 |

Su richiesta questi cuscinetti sono disponibili nella versione in acciaio inox. Appellativo: ad es. LBCT 20 A-2LS/HV6


Su richiesta sono disponibili manicotti a sfere con una tenuta.

22 **5KF** 

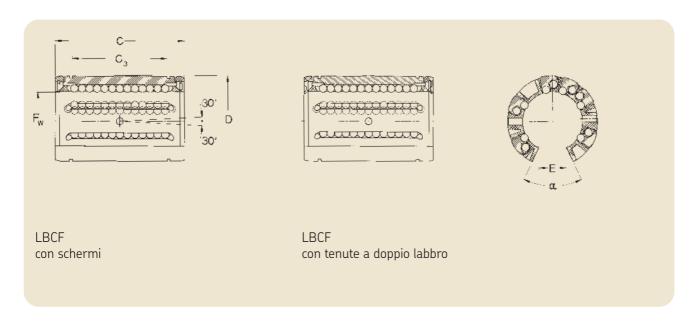
<sup>&</sup>lt;sup>1)</sup>Larghezza settore minima per diametro F<sub>w</sub>. Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26.

### Manicotti a sfere - LBHT

- esecuzione aperta, per esercizio gravoso



| Dimer       | sioni |     |       |                 |       | N. di<br>circuiti | Valori ge<br>di carico | nerali                  | Massa | <b>Appellativi</b><br>Manicotto a s | sfere con                |
|-------------|-------|-----|-------|-----------------|-------|-------------------|------------------------|-------------------------|-------|-------------------------------------|--------------------------|
| $F_{\rm w}$ | D     | С   | $C_3$ | E <sup>1)</sup> | α     | di sfere          | din.<br>C              | stat.<br>C <sub>0</sub> |       | 2 schermi                           | 2 tenute a doppio labbro |
| mm          |       |     |       |                 | gradi | _                 | N                      |                         | kg    |                                     |                          |
| 20          | 32    | 45  | 28    | 10,8            | 60    | 8                 | 2 650                  | 2 650                   | 0,043 | LBHT 20 A                           | LBHT 20 A-2LS            |
| 25          | 40    | 58  | 40    | 13,2            | 60    | 9                 | 4 900                  | 5 100                   | 0,095 | LBHT 25 A                           | LBHT 25 A-2LS            |
| 30          | 47    | 68  | 48    | 14,2            | 50    | 10                | 7 200                  | 8 000                   | 0,16  | LBHT 30 A                           | LBHT 30 A-2LS            |
| 40          | 62    | 80  | 56    | 18,7            | 50    | 10                | 11 600                 | 11 400                  | 0,33  | LBHT 40 A                           | LBHT 40 A-2LS            |
| 50          | 75    | 100 | 72    | 23,6            | 50    | 10                | 17 300                 | 17 000                  | 0,56  | LBHT 50 A                           | LBHT 50 A-2LS            |


Su richiesta questi cuscinetti sono disponibili nella versione in acciaio inox. Appellativo: ad es. LBHT 20 A-2LS/HV6

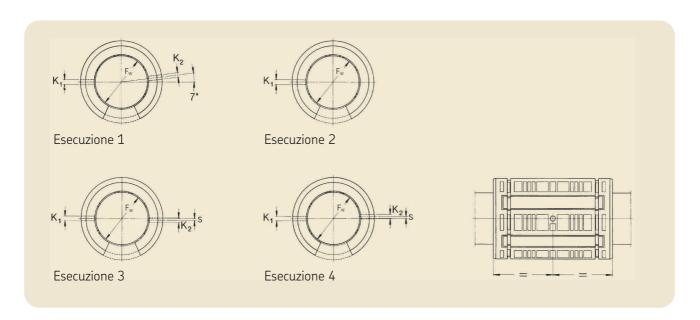
Su richiesta sono disponibili manicotti a sfere con una tenuta.

<sup>&</sup>lt;sup>1)</sup>Larghezza settore minima per diametro F<sub>w</sub>. Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26.

## Manicotti a sfere - LBCF

- autoallineanti e con esecuzione aperta




| Dimen | sioni       |     |    |                |                 | N. di<br>circuiti | Valori ger<br>di carico | nerali    | Massa                   | <b>Appellativi</b><br>Manicotto a sf | ere con                  |
|-------|-------------|-----|----|----------------|-----------------|-------------------|-------------------------|-----------|-------------------------|--------------------------------------|--------------------------|
|       | $F_{\rm w}$ | D   | С  | C <sub>3</sub> | E <sup>1)</sup> | α                 | di sfere                | din.<br>C | stat.<br>C <sub>o</sub> | 2 schermi                            | 2 tenute a doppio labbro |
| mm    |             |     |    |                | gradi           | _                 | N                       |           | kg                      |                                      |                          |
| 12    | 22          | 32  | 20 | 7,6            | 78              | 5                 | 1 080                   | 815       | 0,012                   | LBCF 12 A                            | LBCF 12 A-2LS            |
| 16    | 26          | 36  | 22 | 10,4           | 78              | 5                 | 1 320                   | 865       | 0,016                   | LBCF 16 A                            | LBCF 16 A-2LS            |
| 20    | 32          | 45  | 28 | 10,8           | 60              | 6                 | 2 000                   | 1 370     | 0,035                   | LBCF 20 A                            | LBCF 20 A-2LS            |
| 25    | 40          | 58  | 40 | 13,2           | 60              | 6                 | 2 900                   | 2 040     | 0,07                    | LBCF 25 A                            | LBCF 25 A-2LS            |
| 30    | 47          | 68  | 48 | 14,2           | 50              | 6                 | 4 650                   | 3 250     | 0,11                    | LBCF 30 A                            | LBCF 30 A-2LS            |
| 40    | 62          | 80  | 56 | 18,7           | 50              | 6                 | 7 800                   | 5 200     | 0,22                    | LBCF 40 A                            | LBCF 40 A-2LS            |
| 50    | 75          | 100 | 72 | 23,6           | 50              | 6                 | 11 200                  | 6 950     | 0,37                    | LBCF 50 A                            | LBCF 50 A-2LS            |

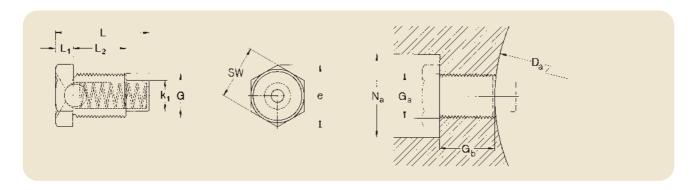
Su richiesta questi cuscinetti sono disponibili nella versione in acciaio inox. Appellativo: ad es. LBCF 20 A-2LS/HV6

Su richiesta sono disponibili manicotti a sfere con una tenuta.

<sup>&</sup>lt;sup>1)</sup>Larghezza settore minima per diametro F<sub>w</sub>. Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26.

# Fissaggio assiale e radiale - per manicotti a sfere LBC e LPA

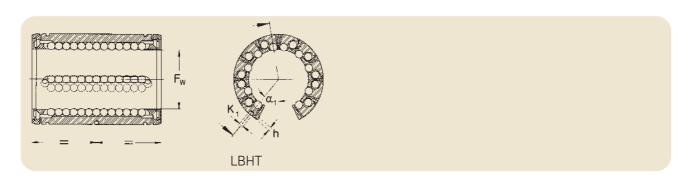



| Dimensio | ni                           |                              |     | Esecuzione <sup>1)</sup> | Ingrassatori<br>adatti <sup>2)</sup> | Viti di<br>pressione³) | Spine4)  |
|----------|------------------------------|------------------------------|-----|--------------------------|--------------------------------------|------------------------|----------|
| $F_w$    | K <sub>1</sub> <sup>7)</sup> | K <sub>2</sub> <sup>8)</sup> | S   |                          |                                      |                        | Diametro |
| mm       |                              |                              |     | _                        |                                      |                        | mm       |
| 56)      | -                            | -                            | _   | -                        | -                                    | -                      | -        |
| 86)      | -                            | -                            | -   | -                        | -                                    | -                      | -        |
| 12       | 3,0                          | 3,0                          | -   | 1                        | VN-LHC 20                            | M 4                    | 3        |
| 16       | 3,0                          | -                            | -   | 2                        | VN-LHC 20                            | M 4                    | 3        |
| 20       | 3,0                          | -                            | -   | 2                        | VN-LHC 20                            | M 4                    | 3        |
| 25       | 3,5                          | 3,0                          | 1,5 | 3                        | VN-LHC 40                            | M 5                    | 3 / 3,5  |
| 30       | 3,5                          | 3,0                          | 2   | 4                        | VN-LHC 40                            | M 5                    | 3 / 3,5  |
| 40       | 3,5                          | 3,0                          | 1,5 | 4                        | VN-LHC 40                            | M 5                    | 3 / 3,5  |
| 50       | 4,5                          | 5,0                          | 2,5 | 4                        | VN-LHC 50                            | M 6                    | 5 / 4,5  |
| 60       | 6,0                          | 2,5                          | 5   | 4                        | VN-LHC 80                            | M 8                    | 6 5)     |
| 80       | 8,0                          | 2,5                          | 5   | 4                        | VN-LHC 80                            | M 8                    | 8 5)     |

<sup>&</sup>lt;sup>1)</sup> Tutti i manicotti a strisciamento dell'esecuzione 2.

 <sup>&</sup>lt;sup>1</sup> Tutti i manicotti a strisciamento dell'esecuzione 2.
 <sup>2</sup> Raccomandazioni per i fori per gli ingrassatori: vedi pagina 26.
 <sup>3</sup> Viti di pressione in conformità a DIN 417 e ISO 7435 o DIN 915 e ISO 4028.
 <sup>4</sup> Spine diritte in conformità a DIN 7, con fessura - DIN 1481 o spine con scanalatura - DIN 1470 e DIN 1471.
 <sup>5</sup> Vite di pressione in conformità a DIN 551 / ISO 4766 o DIN 913 / ISO 4026.
 <sup>6</sup> I manicotti a sfere non richiedono bloccaggi supplementari se la loro lunghezza è pari a quella degli alloggiamenti nei quali sono montati.
 <sup>7</sup> Per la rilubrificazione e per il fissaggio del manicotto nell'alloggiamento SKF.
 <sup>8</sup> Foro alternativo per il fissaggio in alloggiamenti specifici di altri produttori.

## Ingrassatori


- per manicotti a sfere LBC e LPA

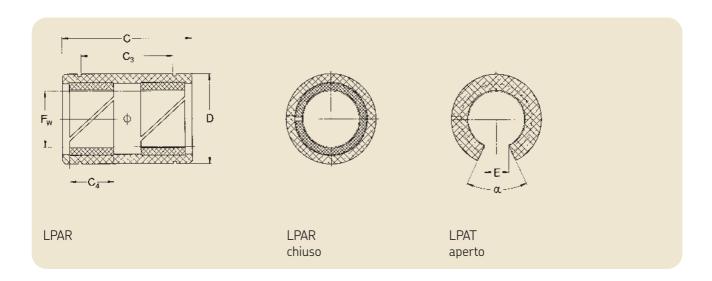


| Dimensi<br>Cuscinet |     | atore |                |                |       |      |    | Appellativi<br>Ingrassatore |       | nsioni ra<br>Jiamento |                            |                |
|---------------------|-----|-------|----------------|----------------|-------|------|----|-----------------------------|-------|-----------------------|----------------------------|----------------|
| F <sub>w</sub>      | G   | L     | L <sub>1</sub> | L <sub>2</sub> | $k_1$ | е    | SW |                             | $D_a$ | $G_{a}$               | $G_{b}_{\mathtt{\pm 0,2}}$ | N <sub>a</sub> |
| mm                  | _   | mm    |                |                |       |      |    | _                           | mm    | _                     | mm                         |                |
| 12                  | M 4 | 7,7   | 1,5            | 3,5            | 3,0   | 5,5  | 5  | VN-LHC 20                   | 22    | M 4                   | 3,8                        | 13             |
| 16                  | M 4 | 7,7   | 1,5            | 3,5            | 3,0   | 5,5  | 5  | VN-LHC 20                   | 26    | M 4                   | 3,8                        | 13             |
| 20                  | M 4 | 7,7   | 1,5            | 3,5            | 3,0   | 5,5  | 5  | VN-LHC 20                   | 32    | M 4                   | 3,8                        | 13             |
| 25                  | M 5 | 11,1  | 2,0            | 5,0            | 3,5   | 6,6  | 6  | VN-LHC 40                   | 40    | M 5                   | 5,2                        | 15             |
| 30                  | M 5 | 11,1  | 2,0            | 5,0            | 3,5   | 6,6  | 6  | VN-LHC 40                   | 47    | M 5                   | 5,2                        | 15             |
| 40                  | M 5 | 11,1  | 2,0            | 5,0            | 3,5   | 6,6  | 6  | VN-LHC 40                   | 62    | M 5                   | 5,2                        | 15             |
| 50                  | M 6 | 14,8  | 2,5            | 7,0            | 4,5   | 7,8  | 7  | VN-LHC 50                   | 75    | M 6                   | 7,2                        | 15             |
| 60                  | M 8 | 20,5  | 3,5            | 10,5           | 6     | 11,1 | 10 | VN-LHC 80                   | 90    | M 8                   | 11,2                       | 18             |
| 80                  | M 8 | 20,5  | 3,5            | 10,5           | 6     | 11,1 | 10 | VN-LHC 80                   | 120   | M 8                   | 5,2                        | 18             |

## Fissaggio assiale e radiale

- per manicotti a sfere LBHT




| Dimens         | sioni             |               |            | Viti di<br>pressione adatte<br>DIN 417 | Dime    | nsioni            |           |            | Viti di<br>pressione adatte<br>DIN 417 |
|----------------|-------------------|---------------|------------|----------------------------------------|---------|-------------------|-----------|------------|----------------------------------------|
| F <sub>w</sub> | $K_1$             | h             | $\alpha_1$ | o DIN 915                              | $F_{w}$ | $K_1$             | h         | $\alpha_1$ | o DIN 915                              |
| mm             |                   |               | gradi      | _                                      |         |                   |           |            |                                        |
| 20             | <b>2,6</b> ± 0,05 | 1,3 ± 0,2     | 47°        | M 4                                    | 50      | <b>4,1</b> ± 0,05 | 1,8 ± 0,3 | 39°        | M 6                                    |
| 25             | <b>2,6</b> ± 0,05 | $1,3 \pm 0,2$ | 55° 12'    | M 4                                    |         |                   |           |            |                                        |
| 30             | <b>3,6</b> ± 0,05 | $1,4 \pm 0,2$ | 39° 15'    | M 5                                    |         |                   |           |            |                                        |
| 40             | <b>3,6</b> ± 0,05 | $1,4 \pm 0,2$ | 38° 51'    | M 5                                    |         |                   |           |            |                                        |

I manicotti a strisciamento LPAR e LPAT hanno le stesse dimensioni esterne dei manicotti a sfere LBC. Questi manicotti, che non presentano tenute o schermi, sono disponibili con diametri da 5 a 80 mm (LPAR) e da 12 a 80 mm (LPAT). Tutte le versioni, eccetto LPAR 5 e 8, possono essere rilubrificate. I cuscinetti senza nipplo di ingrassaggio vengono mantenuti in sede mediante un anello di ritegno (a norma DIN 471) su ciascun lato. I cuscinetti con nipplo di ingrassaggio vengono fissati mediante di esso.



## Manicotti a strisciamento – LPAR/LPAT

- esecuzione chiusa e aperta



| Dime           | nsioni     |     |                |                |                 |       | Valori ger | nerali di |         | Massa    |        | Appellativi<br>Manicotto a |         |
|----------------|------------|-----|----------------|----------------|-----------------|-------|------------|-----------|---------|----------|--------|----------------------------|---------|
|                |            |     |                |                |                 |       | din. a     |           | stat.   | Esecuzio | пе     | strisciamen                |         |
|                |            |     |                |                |                 |       | 0,1 m/s    | 4 m/s     |         | chiusa   | aperta | chiuso                     | aperto  |
| F <sub>w</sub> | D<br>-0,05 | С   | C <sub>3</sub> | C <sub>4</sub> | E <sup>1)</sup> | α     | С          | С         | $C_0$   |          | ·      |                            |         |
| mm             |            |     |                |                |                 | gradi | Ν          |           |         | kg       |        | _                          |         |
| 5              | 12         | 22  | 12             | 7              | -               | -     | 280        | 7         | 980     | 0,003    | -      | LPAR 5                     | -       |
| 8              | 16         | 25  | 14             | 8              | -               | -     | 510        | 13        | 1 800   | 0,005    | -      | LPAR 8                     | -       |
| 12             | 22         | 32  | 20             | 10             | 7,6             | 78    | 965        | 24        | 3 350   | 0,012    | 0,008  | LPAR 12                    | LPAT 12 |
| 16             | 26         | 36  | 22             | 12             | 10,4            | 78    | 1 530      | 38        | 5 400   | 0,016    | 0,012  | LPAR 16                    | LPAT 16 |
| 20             | 32         | 45  | 28             | 15             | 10,8            | 60    | 2 400      | 60        | 8 300   | 0,03     | 0,023  | LPAR 20                    | LPAT 20 |
| 25             | 40         | 58  | 40             | 20             | 13,2            | 60    | 4 000      | 100       | 14 000  | 0,06     | 0,045  | LPAR 25                    | LPAT 25 |
| 30             | 47         | 68  | 48             | 23             | 14,2            | 50    | 5 500      | 137       | 19 300  | 0,09     | 0,07   | LPAR 30                    | LPAT 30 |
| 40             | 62         | 80  | 56             | 25             | 18,7            | 50    | 8 000      | 200       | 28 000  | 0,20     | 0,15   | LPAR 40                    | LPAT 40 |
| 50             | 75         | 100 | 72             | 30             | 23,6            | 50    | 12 000     | 300       | 41 500  | 0,34     | 0,26   | LPAR 50                    | LPAT 50 |
| 60             | 90         | 125 | 95             | 35             | 29,6            | 54    | 16 600     | 415       | 60 000  | 0,63     | 0,46   | LPAR 60                    | LPAT 60 |
| 80             | 120        | 165 | 125            | 45             | 38,4            | 54    | 29 000     | 720       | 100 000 | 1,50     | 1,10   | LPAR 80                    | LPAT 80 |

 $<sup>^{1)}</sup>$ Larghezza settore minima per diametro  $F_{w}$ . Per la posizione assiale e la protezione contro il movimento relativo vedi pagine 25/26.

### Gruppi di guida assiale, ISO serie 3

È disponibile una gamma completa di gruppi di guida assiale e manicotti a sfere. Oltre alle esecuzioni base degli alloggiamenti a cuscinetto singolo, sono disponibili anche unità flangiate nelle versioni tandem o quadro.

I gruppi di guida assiale hanno un alloggiamento leggero in alluminio pressofuso studiato per fornire la massima resistenza e rigidità. Grazie al peso limitato, le forze di accelerazione e inerzia sono ridotte al minimo. I gruppi di guida assiale LUC sono disponibili per alberi con diametro da 8 a 80 mm.

I gruppi di guida assiale LUCD/LUCR consentono di realizzare un sistema di guida lineare davvero economico. I gruppi di guida assiale LUCD (per alberi con diametro da 12 a 80 mm) sono normalmente forniti completi di manicotto a sfere schermato LBCD autoallineante. I gruppi di guida assiale LUCR (per alberi con diametro da 8 a 80 mm) sono forniti con manicotto a sfere schermato LBCR rigido. Il cuscinetto è fissato assialmente mediante un nipplo di ingrassaggio che ne evita la rotazione. Queste

unità sono disponibili a richiesta anche complete di manicotti a strisciamento LPAR (appellativo LUCR ... PA). Le unità con manicotto a strisciamento LPAR con diametro da 8 mm non possono essere rilubrificate. Per questo motivo questi cuscinetti devono essere fissati assialmente mediante anelli di ritegno. L'appellativo di queste unità è: LUCR/LUCR ... PA.



I gruppi di guida assiale LUCE/LUCS sono simili nell'esecuzione alle unità LUCD/LUCR, ma anziché averne uno chiuso, hanno un alloggiamento aperto provvisto di vite di regolazione. Queste unità vengono impiegate per applicazioni che richiedono precarico o gioco nullo.

I gruppi di guida assiale LUCE/ LUCD sono forniti con manicotti a sfere LBCD autoallineanti. I gruppi di guida assiale LUCS/LUCR sono forniti con manicotti a sfere LBCD rigidi. Questi gruppi non sono disponibili con manicotti a strisciamento.

I gruppi di guida assiale LUCF/LUCT sono concepiti per applicazioni nelle quali, a causa di carichi elevati e/o di guide di lunghezza superiori, è richiesto un supporto parziale o completo per tutta l'estensione dell'albero. Per questa ragione sia gli alloggiamenti che i cuscinetti hanno un'esecuzione aperta. Per il resto questi gruppi sono uguali a quelli LUCD/LUCR chiusi. I gruppi di guida assiale aperti sono disponibili di serie con manicotto a sfere LBCF autoallineante o LBCT rigido.

Per le misure da 12 a 80 mm il cuscinetto è fissato assialmente mediante un nipplo di ingrassaggio. Se l'applicazione richiede elevate capacità di carico e massima durata di servizio, i gruppi LUCT possono essere forniti completi di manicotti a sfere LBHT di dimensioni da 20 a 50 mm (appellativo: LUCT ... BH). Questi gruppi consentono la rilubrificazione. I gruppi di guida possono essere forniti anche con manicotti a strisciamento (appellativo LUCT ... PA).

I gruppi di guida assiale LUN sono forniti di serie con manicotti a sfere autoallineanti con schermo o con tenuta. Sono disponibili in tre versioni: chiusi (LUND), regolabili (LUNE), aperti e regolabili (LUNF), adatti per alberi con diametro da 12 a 50 mm.

A differenza dei gruppi di guida assiale LUC descritti qui sopra, un alloggiamento in alluminio estruso avvolge il manicotto a sfere per l'intera lunghezza. Sul lato inferiore dell'alloggiamento sono praticati due fori di fissaggio diagonalmente contrapposti medianti i quali è possibile fissare assialmente il cuscinetto e impedirne la rotazione. Questi gruppi consentono la rilubrificazione.

I gruppi di guida assiale flangiati LVCR sono composti da un alloggiamento flangiato chiuso in ghisa e un manicotto a sfere LBCR rigido (da 12 a 80 mm). Il cuscinetto, a tenuta su entrambi i lati, è fissato assialmente mediante un perno filettato. La flangia è lavorata sulle due facce così da consentire il montaggio sul lato anteriore o posteriore in ciascuna direzione. I gruppi di guida assiale flangiati non prevedono la rilubrificazione.

I gruppi di guida assiale LTC tandem sono costituiti da un robusto alloggiamento in alluminio estruso e due manicotti a sfere autoallineanti, montati uno dietro l'altro. Ogni cuscinetto è fissato mediante il nipplo di ingrassaggio, che ne impedisce la rotazione.

I gruppi di guida assiale tandem consentono di realizzare sistemi di guida lineare, ad es. tavole, di qualsiasi larghezza. L'alloggiamento può essere fissato alla relativa superficie di supporto da sotto mediante viti a brugola o da sopra mediante i due fori filettati presenti nell'alloggiamento. I gruppi tandem sono disponibili in due versioni: chiusi (LTCD) o aperti (LTCF). I manicotti a sfere sono forniti di serie con una tenuta sul lato esterno. Per alberi con diametro da 12 a 50 mm.

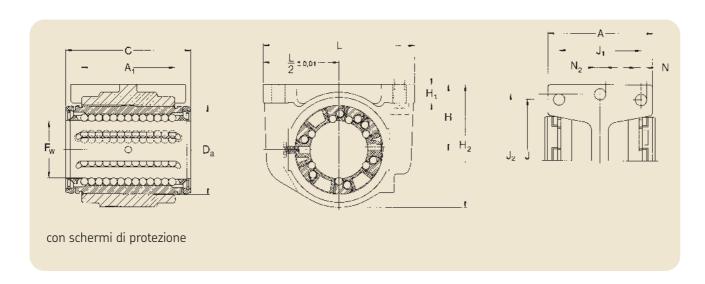
I gruppi di guida assiale LQC quadro sono composti da un alloggiamento monopezzo in alluminio con due fori paralleli, in ognuno dei quali sono montati due manicotti a sfere auto-allineanti. La tenuta è presente solo sui lati esterni. Mediante il nipplo di ingrassaggio è possibile fissare assialmente i cuscinetti e impedirne la rotazione. La rilubrificazione è possibile, salvo per i gruppi di dimensione 8. I gruppi quadro SKF sono disponibili in due versioni: chiusi (LQCD) e aperti (LQCF).

I gruppi quadro in combinazione con i supporti di estremità LEAS tandem (esecuzione chiusa) o con i supporti per albero LRCB (esecuzione aperta) consentono di realizzare tavole e slitte lineari semplici. Per dettagli al riguardo, consultare le pagine 49 - 51 di questo catalogo.

L'esecuzione LQC è disponibile per alberi con dimensioni da 8 a 50 mm. Un'eccezione è rappresentata dal gruppo di dimensione 8, che ha un manicotto a sfere non autoallineante LBCR 8 A-LS (appellativo completo LQCR 8 A-2LS). I gruppi LQCF sono adatti per alberi con diametro da 12 a 50 mm.

Tutti i gruppi quadro possono essere fissati sulla relativa superficie di supporto o da sotto con viti a brugola o mediante i fori filettati praticati nell'alloggiamento.

#### Nota


Tutti i gruppi di guida assiale (da 12 a 50 mm) possono a richiesta essere equipaggiati con manicotti a sfere non autoallineanti.

30 **EKF** 

## Gruppi di guida assiale - LUCR/LUCD

alloggiamento chiuso, rilubrificabile

- versione LUCR con cuscinetto LBCR
- versione LUCD con cuscinetto LBCD, autoallineante

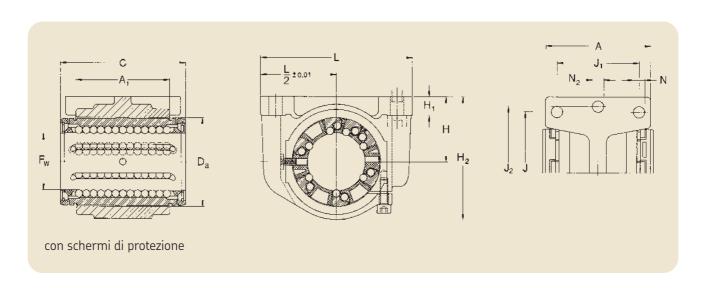


| Dime    | nsioni |       | ensioni |         |            |       |       |     |       |       |     |          |             | Valori ge | nerali | Massa | Appellativi          |                          |
|---------|--------|-------|---------|---------|------------|-------|-------|-----|-------|-------|-----|----------|-------------|-----------|--------|-------|----------------------|--------------------------|
|         |        |       |         |         |            |       |       |     |       |       |     |          |             | di carico |        |       | Gruppo di g          | guida assiale con        |
|         |        |       |         |         |            |       |       |     |       |       |     |          |             | din.      | stat.  |       | 2 schermi            | 2 tenute                 |
|         |        |       |         |         |            |       |       |     |       |       |     |          |             |           |        |       |                      | a doppio labbro          |
| $F_{w}$ | Α      | $A_1$ | С       | $D_{a}$ | H<br>±0,01 | $H_1$ | $H_2$ | J   | $J_1$ | $J_2$ | L   | $N^{2)}$ | $N_2^{(2)}$ | С         | $C_0$  |       |                      |                          |
| mm      |        |       |         |         |            |       |       |     |       |       |     |          |             | N         |        | kg    |                      |                          |
| 8       | 27     | 14    | 25      | 16      | 15         | 5,5   | 28    | 25  | 20    | 35    | 45  | 3,2      | 5,3         | 490       | 355    | 0,028 | LUCR 8 <sup>1)</sup> | LUCR 8-2LS <sup>1)</sup> |
| 12      | 31     | 20    | 32      | 22      | 18         | 6     | 34,5  | 32  | 23    | 42    | 52  | 4,3      | 5,3         | 1 080     | 815    | 0,053 | LUCD 12              | LUCD 12-2LS              |
| 16      | 34,5   | 22    | 36      | 26      | 22         | 7     | 40,5  | 40  | 26    | 46    | 56  | 4,3      | 5,3         | 1 320     | 865    | 0,069 | LUCD 16              | LUCD 16-2LS              |
| 20      | 41     | 28    | 45      | 32      | 25         | 8     | 48    | 45  | 32    | 58    | 70  | 4,3      | 6,4         | 2 000     | 1 370  | 0,144 | LUCD 20              | LUCD 20-2LS              |
| 25      | 52     | 40    | 58      | 40      | 30         | 10    | 58    | 60  | 40    | 68    | 80  | 5,3      | 6,4         | 2 900     | 2 040  | 0,285 | LUCD 25              | LUCD 25-2LS              |
| 30      | 59     | 48    | 68      | 47      | 35         | 10    | 67    | 68  | 45    | 76    | 88  | 6,4      | 6,4         | 4 650     | 3 250  | 0,4   | LUCD 30              | LUCD 30-2LS              |
| 40      | 74     | 56    | 80      | 62      | 45         | 12    | 85    | 86  | 58    | 94    | 108 | 8,4      | 8,4         | 7 800     | 5 200  | 0,72  | LUCD 40              | LUCD 40-2LS              |
| 50      | 66     | 72    | 100     | 75      | 50         | 14    | 99    | 108 | 50    | 116   | 135 | 8,4      | 10,5        | 11 200    | 6 950  | 1,19  | LUCD 50              | LUCD 50-2LS              |
| 60      | 84     | 95    | 125     | 90      | 60         | 18    | 118   | 132 | 65    | 138   | 160 | 10,5     | 13          | 20 400    | 18 000 | 2,17  | LUCR 60              | LUCR 60-2LS              |
| 80      | 113    | 125   | 165     | 120     | 80         | 22    | 158   | 170 | 90    | 180   | 205 | 13       | 13          | 37 500    | 32 000 | 5,15  | LUCR 80              | LUCR 80-2LS              |

I gruppi di guida LUCD/LUCR sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUCD/LUCR 20-2LS/HV6.

I gruppi di quida assiale LUCD possono essere equipaggiati con manicotti a sfere del tipo LBCR. Appellativo: ad es. LUCR 12-2LS.

I gruppi di guida assiale LUCR/LUCD con F<sub>w</sub> 8-80 sono disponibili anche con manicotti a strisciamento. Appellativo: ad es. LUCR 20 PA.


Per i supporti di estremità LSCS/LSNS adatti per questi gruppi di guida, vedere le pagine 44/45.

<sup>&</sup>lt;sup>1)</sup> I manicotti a sfere montati in questi gruppi sono fissati mediante anelli di ritegno a norma DIN 471, non sono rilubrificabili, né autoallineanti. <sup>2)</sup> Per viti con esagono incassato a norma DIN 912 / ISO 4762

### Gruppi di guida assiale – LUCS/LUCE

alloggiamento a taglio longitudinale, rilubrificabili, con gioco regolabile

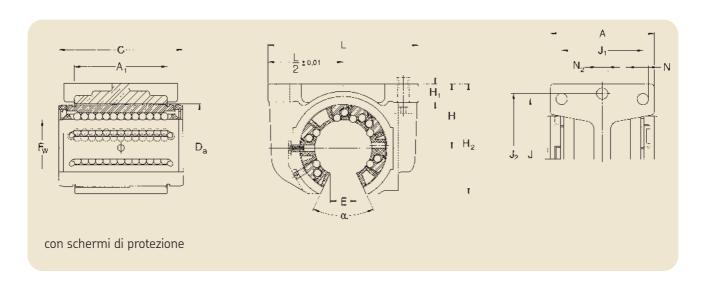
- versione LUCS con cuscinetto LBCR,
- versione LUCE con cuscinetto LBCD, autoallineante



|             |      |       |     |         |            |                |                |     |       |       |     |                 | Valori generali              |           | Appellativi |       |              |                             |
|-------------|------|-------|-----|---------|------------|----------------|----------------|-----|-------|-------|-----|-----------------|------------------------------|-----------|-------------|-------|--------------|-----------------------------|
|             |      |       |     |         |            |                |                |     |       |       |     |                 |                              | di carico |             |       | Gruppo di gu | uida assiale con            |
|             |      |       |     |         |            |                |                |     |       |       |     |                 |                              | din.      | stat.       |       | 2 schermi    | 2 tenute a<br>doppio labbro |
| $F_{\rm w}$ | Α    | $A_1$ | С   | $D_{a}$ | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | J   | $J_1$ | $J_2$ | L   | N <sup>2)</sup> | N <sub>2</sub> <sup>2)</sup> | С         | $C_0$       |       |              |                             |
| mm          |      |       |     |         |            |                |                |     |       |       |     |                 |                              | N         |             | kg    |              | _                           |
| 8           | 27   | 14    | 25  | 16      | 15         | 5,5            | 28             | 25  | 20    | 35    | 45  | 3,2             | 5,3                          | 490       | 355         | 0,028 | LUCS 81)     | LUCS 8-2LS <sup>1)</sup>    |
| 12          | 31   | 20    | 32  | 22      | 18         | 6              | 34,5           | 32  | 23    | 42    | 52  | 4,3             | 5,3                          | 1 080     | 815         | 0,053 | LUCE 12      | LUCE 12-2LS                 |
| 16          | 34,5 | 22    | 36  | 26      | 22         | 7              | 40,5           | 40  | 26    | 46    | 56  | 4,3             | 5,3                          | 1 320     | 865         | 0,069 | LUCE 16      | LUCE 16-2LS                 |
| 20          | 41   | 28    | 45  | 32      | 25         | 8              | 48             | 45  | 32    | 58    | 70  | 4,3             | 6,4                          | 2 000     | 1 370       | 0,144 | LUCE 20      | LUCE 20-2LS                 |
| 25          | 52   | 40    | 58  | 40      | 30         | 10             | 58             | 60  | 40    | 68    | 80  | 5,3             | 6,4                          | 2 900     | 2 040       | 0,285 | LUCE 25      | LUCE 25-2LS                 |
| 30          | 59   | 48    | 68  | 47      | 35         | 10             | 67             | 68  | 45    | 76    | 88  | 6,4             | 6,4                          | 4 650     | 3 250       | 0,4   | LUCE 30      | LUCE 30-2LS                 |
| 40          | 74   | 56    | 80  | 62      | 45         | 12             | 85             | 86  | 58    | 94    | 108 | 8,4             | 8,4                          | 7 800     | 5 200       | 0,72  | LUCE 40      | LUCE 40-2LS                 |
| 50          | 66   | 72    | 100 | 75      | 50         | 14             | 99             | 108 | 50    | 116   | 135 | 8,4             | 10,5                         | 11 200    | 6 950       | 1,19  | LUCE 50      | LUCE 50-2LS                 |
| 60          | 84   | 95    | 125 | 90      | 60         | 18             | 118            | 132 | 65    | 138   | 160 | 10,5            | 13                           | 20 400    | 18 000      | 2,17  | LUCS 60      | LUCS 60-2LS                 |
| 80          | 113  | 125   | 165 | 120     | 80         | 22             | 158            | 170 | 90    | 180   | 205 | 13              | 13                           | 37 500    | 32 000      | 5,15  | LUCS 80      | LUCS 80-2LS                 |

I gruppi di guida LUCE/LUCS sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUCE/LUCS 20-2LS/HV6.

I gruppi di guida assiale LUCE possono anche essere equipaggiati con manicotti a sfere del tipo LBCR ... A. Appellativo: ad es. LUCS 20-2LS.


Per i supporti di estremità LSCS/LSNS adatti per questi gruppi di guida, vedere le pagine 44/45.

<sup>&</sup>lt;sup>1)</sup> I manicotti a sfere montati in questi gruppi sono fissati mediante anelli di ritegno a norma DIN 471, non sono rilubrificabili, né autoallineanti. <sup>2)</sup> Per viti con esagono incassato a norma DIN 912 / ISO 4762.

### Gruppi di guida assiale – LUCT/LUCF

alloggiamento aperto, rilubrificabili, con gioco regolabile

- versione LUCT con cuscinetto LBCT
- versione LUCF con versione LBCF, autoallineante

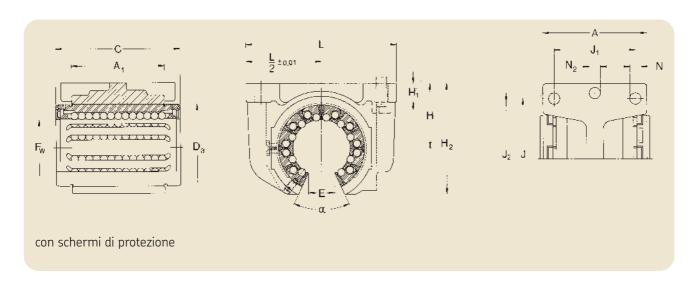


| Dim     | Dimensioni |       |     |         |            |                |                |     |       |                |     |          |            | Valori generali<br>di carico |       | Massa  |        | Appellativi<br>Gruppo di guida assiale con |           |                             |
|---------|------------|-------|-----|---------|------------|----------------|----------------|-----|-------|----------------|-----|----------|------------|------------------------------|-------|--------|--------|--------------------------------------------|-----------|-----------------------------|
|         |            |       |     |         |            |                |                |     |       |                |     |          |            |                              |       | din.   | stat.  |                                            | 2 schermi | 2 tenute a<br>doppio labbro |
| $F_{w}$ | Α          | $A_1$ | С   | $D_{a}$ | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | J   | $J_1$ | J <sub>2</sub> | L   | $N^{2)}$ | $N_2^{2)}$ | E <sup>1)</sup>              | α     | С      | $C_0$  |                                            |           |                             |
| mm      |            |       |     |         |            |                |                |     |       |                |     |          |            |                              | gradi | N      |        | kg                                         | _         |                             |
| 12      | 31         | 20    | 32  | 22      | 18         | 6              | 28             | 32  | 23    | 42             | 52  | 4,3      | 5,3        | 7,6                          | 78    | 1 080  | 815    | 0,046                                      | LUCF 12   | LUCF 12-2LS                 |
| 16      | 34,5       | 22    | 36  | 26      | 22         | 7              | 35             | 40  | 26    | 46             | 56  | 4,3      | 5,3        | 10,4                         | 78    | 1 320  | 865    | 0,061                                      | LUCF 16   | LUCF 16-2LS                 |
| 20      | 41         | 28    | 45  | 32      | 25         | 8              | 42             | 45  | 32    | 58             | 70  | 4,3      | 6,4        | 10,8                         | 60    | 2 000  | 1 370  | 0,124                                      | LUCF 20   | LUCF 20-2LS                 |
| 25      | 52         | 40    | 58  | 40      | 30         | 10             | 51             | 60  | 40    | 68             | 80  | 5,3      | 6,4        | 13,2                         | 60    | 2 900  | 2 040  | 0,251                                      | LUCF 25   | LUCF 25-2LS                 |
| 30      | 59         | 48    | 68  | 47      | 35         | 10             | 60             | 68  | 45    | 76             | 88  | 6,4      | 6,4        | 14,2                         | 50    | 4 650  | 3 250  | 0,374                                      | LUCF 30   | LUCF 30-2LS                 |
| 40      | 74         | 56    | 80  | 62      | 45         | 12             | 77             | 86  | 58    | 94             | 108 | 8,4      | 8,4        | 18,7                         | 50    | 7 800  | 5 200  | 0,63                                       | LUCF 40   | LUCF 40-2LS                 |
| 50      | 66         | 72    | 100 | 75      | 50         | 14             | 88             | 108 | 50    | 116            | 135 | 8,4      | 10,5       | 23,6                         | 50    | 11 200 | 6 950  | 1,04                                       | LUCF 50   | LUCF 50-2LS                 |
|         |            |       |     |         |            |                |                |     |       |                |     |          |            |                              |       |        |        |                                            |           |                             |
| 60      | 84         | 95    | 125 | 90      | 60         | 18             | 105            | 132 | 65    | 138            | 160 | 10,5     | 13,0       | 29,6                         | 54    | 20 400 | 18 000 | 2,0                                        | LUCT 60   | LUCT 60-2LS                 |
| 80      | 113        | 125   | 165 | 120     | 80         | 22             | 140            | 170 | 90    | 180            | 205 | 13,0     | 13,0       | 38,4                         | 54    | 37 500 | 32 000 | 5,0                                        | LUCT 80   | LUCT 80-2LS                 |

I gruppi di guida LUCF/LUCT sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUCF/LUCT 20-2LS/HV6.

I gruppi di guida assiale LUCF possono essere equipaggiati con manicotti a sfere del tipo LBCT ... A. Appellativo: ad es. LUCT 20-2LS.

I gruppi di guida assiale LUCF/LUCT con  $F_{\rm w}$  12-80 sono disponibili anche con manicotti a strisciamento. Appellativo: ad es. LUCT 20 PA.


Per i supporti per alberi adatti a questi gruppi di guida, appellativo LRCB/LRCC, vedi pagina 47.

 $<sup>^{1)}</sup>$  Larghezza minima del settore sul diametro  $F_{\rm w}.$   $^{2)}$  Per viti a testa cilindrica con esagono incassato a norma DIN 912 / ISO 4762.

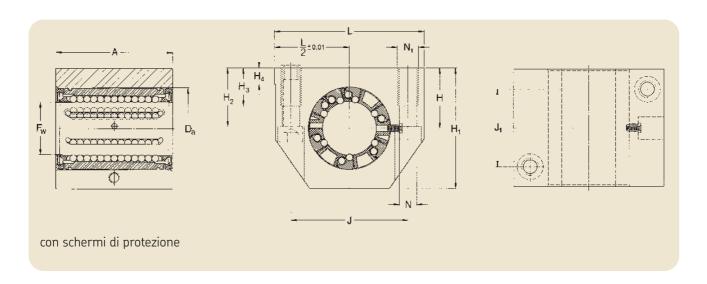
## Gruppi di guida assiale - LUCT ... BH

alloggiamento aperto, rilubrificabili, con gioco regolabile

- versione LUCT con cuscinetto LBHT



|             |    |       |     |         |            |                |                |     |       |                |     |          | Valori ge<br>di carico       | nerali N        | Massa | <b>Appellativi</b><br>Gruppo di guida assiale con |        |       |            |                             |
|-------------|----|-------|-----|---------|------------|----------------|----------------|-----|-------|----------------|-----|----------|------------------------------|-----------------|-------|---------------------------------------------------|--------|-------|------------|-----------------------------|
|             |    |       |     |         |            |                |                |     |       |                |     |          |                              |                 |       | din.                                              | stat.  |       | 2 schermi  | 2 tenute a<br>doppio labbro |
| $F_{\rm w}$ | Α  | $A_1$ | С   | $D_{a}$ | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | J   | $J_1$ | J <sub>2</sub> | L   | $N^{2)}$ | N <sub>2</sub> <sup>2)</sup> | E <sup>1)</sup> | α     | С                                                 | $C_0$  |       |            |                             |
| mm          |    |       |     |         |            |                |                |     |       |                |     |          |                              |                 | grad  | li N                                              |        | kg    | _          |                             |
| 20          | 41 | 28    | 45  | 32      | 25         | 8              | 42             | 45  | 32    | 58             | 70  | 4,3      | 6,4                          | 10,8            | 60    | 2 650                                             | 2 650  | 0,14  | LUCT 20 BH | LUCT 20 BH-2LS              |
| 25          | 52 | 40    | 58  | 40      | 30         | 10             | 51             | 60  | 40    | 68             | 80  | 5,3      | 6,4                          | 13,2            | 60    | 4 900                                             | 5 100  | 0,275 | LUCT 25 BH | LUCT 25 BH-2LS              |
| 30          | 59 | 48    | 68  | 47      | 35         | 10             | 60             | 68  | 45    | 76             | 88  | 6,4      | 6,4                          | 14,2            | 50    | 7 200                                             | 8 000  | 0,48  | LUCT 30 BH | LUCT 30 BH-2LS              |
| 40          | 74 | 56    | 80  | 62      | 45         | 12             | 77             | 86  | 58    | 94             | 108 | 8,4      | 8,4                          | 18,7            | 50    | 11 600                                            | 11 400 | 0,86  | LUCT 40 BH | LUCT 40 BH-2LS              |
| 50          | 66 | 72    | 100 | 75      | 50         | 14             | 88             | 108 | 50    | 116            | 135 | 8,4      | 10,5                         | 23,6            | 50    | 17 300                                            | 17 000 | 1,44  | LUCT 50 BH | LUCT 50 BH-2LS              |


I gruppi di guida LUCT sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUCT 20 BH-2LS/HV6.

Per questi gruppi sono disponibili supporti albero adatti, appellativo LRCB/LRCC. Vedi pagina 47 per maggiori dettagli.

 $<sup>^{1)}</sup>$  Larghezza minima del settore sul diametro  $F_{w^{\star}}$   $^{2)}$  Per viti con esagono incassato a norma DIN 912 / ISO 4762.

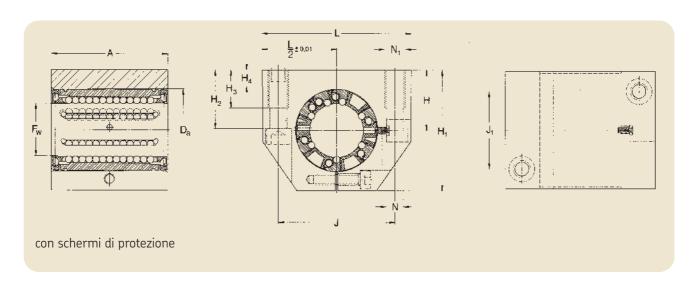
# Gruppi di guida assiale – LUND alloggiamento chiuso, rilubrificabile

- versione LUND con cuscinetto LBCD, autoallineante



| Dime           | Dimensioni |       |            |                |                |                |                |     |       |     |                 |            |        | enerali        | Massa | <b>Appellativi</b><br>Gruppo di guid | da assiale con              |
|----------------|------------|-------|------------|----------------|----------------|----------------|----------------|-----|-------|-----|-----------------|------------|--------|----------------|-------|--------------------------------------|-----------------------------|
|                |            |       |            |                |                |                |                |     |       |     |                 |            | din.   | stat.          |       | 2 schermi                            | 2 tenute a<br>doppio labbro |
| F <sub>w</sub> | Α          | $D_a$ | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> | J   | $J_1$ | L   | N <sup>1)</sup> | $N_1^{1)}$ | С      | C <sub>o</sub> |       |                                      |                             |
| mm             |            |       |            |                |                |                |                |     |       |     |                 | _          | N      |                | kg    | _                                    |                             |
| 12             | 32         | 22    | 18         | 35             | 16,5           | 11             | 6              | 32  | 23    | 43  | 4,3             | M 5        | 1 080  | 815            | 0,093 | LUND 12                              | LUND 12-2LS                 |
| 16             | 37         | 26    | 22         | 42             | 21             | 13             | 7              | 40  | 26    | 53  | 5,3             | M 6        | 1 320  | 865            | 0,161 | LUND 16                              | LUND 16-2LS                 |
| 20             | 45         | 32    | 25         | 50             | 24             | 18             | 7,5            | 45  | 32    | 60  | 6,6             | M 8        | 2 000  | 1 370          | 0,255 | LUND 20                              | LUND 20-2LS                 |
| 25             | 58         | 40    | 30         | 61             | 29             | 22             | 8,5            | 60  | 40    | 78  | 8,4             | M 10       | 2 900  | 2 040          | 0,533 | LUND 25                              | LUND 25-2LS                 |
| 30             | 68         | 47    | 35         | 70             | 34             | 22             | 9,5            | 68  | 45    | 87  | 8,4             | M 10       | 4 650  | 3 250          | 0,79  | LUND 30                              | LUND 30-2LS                 |
| 40             | 80         | 62    | 45         | 90             | 44             | 26             | 11             | 86  | 58    | 108 | 10,5            | M 12       | 7 800  | 5 200          | 1,44  | LUND 40                              | LUND 40-2LS                 |
| 50             | 100        | 75    | 50         | 105            | 49             | 35             | 11             | 108 | 50    | 132 | 13,5            | M 16       | 11 200 | 6 950          | 2,47  | LUND 50                              | LUND 50-2LS                 |

Su richiesta le unità cuscinetti LUND sono disponibili nella versione in acciaio inox. Appellativo: ad es. LUND 20-2LS/HV6.


Per i supporti di estremità LSCS/LSNS adatti per questi gruppi di guida, vedere le pagine 44/45.

<sup>&</sup>lt;sup>1)</sup>Per viti con esagono incassato a norma DIN 912 / ISO 4762.

## Gruppi di guida assiale - LUNE

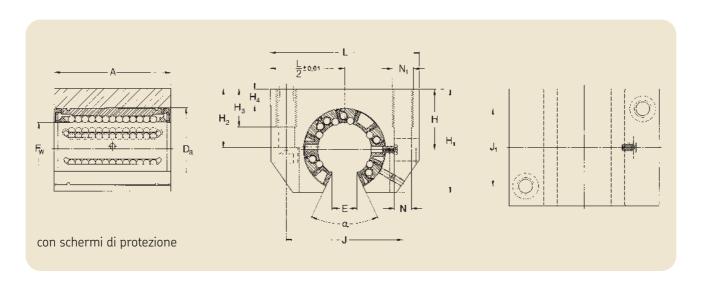
alloggiamento a taglio longitudinale, rilubrificabili, con gioco regolabile

- versione LUNE con cuscinetto LBCD, autoallineante



| Dime           | Dimensioni |                |       |     |                |    |     |     |    |     |                 |                              | Valori gei<br>di carico | nerali                  | Massa | <b>Appellativi</b><br>Gruppo di gu | ida assiale con             |
|----------------|------------|----------------|-------|-----|----------------|----|-----|-----|----|-----|-----------------|------------------------------|-------------------------|-------------------------|-------|------------------------------------|-----------------------------|
| F <sub>w</sub> | А          | D <sub>a</sub> | Н     | H₁  | H <sub>2</sub> | Нз | Н₄  | J   | J₁ | L   | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | din.<br>C               | stat.<br>C <sub>0</sub> |       | 2 schermi                          | 2 tenute a<br>doppio labbro |
| - w            |            | - a            | ±0,01 | 1   | 2              | 3  | 4   |     | -1 |     |                 | 1                            |                         | -0                      |       |                                    |                             |
| mm             |            |                |       |     |                |    |     |     |    |     |                 | _                            | N                       |                         | kg    | _                                  |                             |
| 12             | 32         | 22             | 18    | 35  | 16,5           | 11 | 6   | 32  | 23 | 43  | 4,3             | M 5                          | 1 080                   | 815                     | 0,093 | LUNE 12                            | LUNE 12-2LS                 |
| 16             | 37         | 26             | 22    | 42  | 21             | 13 | 7   | 40  | 26 | 53  | 5,3             | M 6                          | 1 320                   | 865                     | 0,161 | LUNE 16                            | LUNE 16-2LS                 |
| 20             | 45         | 32             | 25    | 50  | 24             | 18 | 7,5 | 45  | 32 | 60  | 6,6             | M 8                          | 2 000                   | 1 370                   | 0,255 | LUNE 20                            | LUNE 20-2LS                 |
| 25             | 58         | 40             | 30    | 61  | 29             | 22 | 8,5 | 60  | 40 | 78  | 8,4             | M 10                         | 2 900                   | 2 040                   | 0,533 | LUNE 25                            | LUNE 25-2LS                 |
| 30             | 68         | 47             | 35    | 70  | 34             | 22 | 9,5 | 68  | 45 | 87  | 8,4             | M 10                         | 4 650                   | 3 250                   | 0,79  | LUNE 30                            | LUNE 30-2LS                 |
| 40             | 80         | 62             | 45    | 90  | 44             | 26 | 11  | 86  | 58 | 108 | 10,5            | M 12                         | 7 800                   | 5 200                   | 1,44  | LUNE 40                            | LUNE 40-2LS                 |
| 50             | 100        | 75             | 50    | 105 | 49             | 35 | 11  | 108 | 50 | 132 | 13,5            | M 16                         | 11 200                  | 6 950                   | 2,47  | LUNE 50                            | LUNE 50-2LS                 |

I gruppi di guida LUNE sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUNE 20-2LS/HV6.


Per i supporti di estremità LSCS/LSNS adatti per questi gruppi di guida, vedere le pagine 44/45.

<sup>&</sup>lt;sup>1)</sup>Per viti con esagono incassato a norma DIN 912 / ISO 4762.

## Gruppi di guida assiale - LUNF

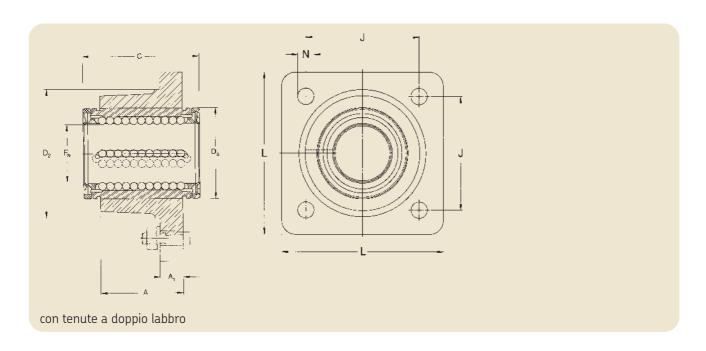
alloggiamento aperto, rilubrificabili, con gioco regolabile

- versione LUNF con versione LBCF, autoallineante



| Dime    | ension | i     |            |                |                |                |                |     |       |     |                 |                              |                 |       | Valori ge<br>di carico |                         | Massa |           | guida assiale con           |
|---------|--------|-------|------------|----------------|----------------|----------------|----------------|-----|-------|-----|-----------------|------------------------------|-----------------|-------|------------------------|-------------------------|-------|-----------|-----------------------------|
| $F_{w}$ | А      | $D_a$ | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> | J   | $J_1$ | L   | N <sup>2)</sup> | N <sub>1</sub> <sup>2)</sup> | E <sup>1)</sup> | α     | din.<br>C              | stat.<br>C <sub>0</sub> |       | 2 schermi | 2 tenute a<br>doppio labbro |
| mm      |        |       |            |                |                |                |                |     |       |     |                 | _                            | mm              | gradi | N                      |                         | kg    | _         |                             |
| 12      | 32     | 22    | 18         | 28             | 16,5           | 11             | 6              | 32  | 23    | 43  | 4,3             | M 5                          | 7,6             | 78    | 1 080                  | 815                     | 0,074 | LUNF 12   | LUNF 12-2LS                 |
| 16      | 37     | 26    | 22         | 35             | 21             | 13             | 7              | 40  | 26    | 53  | 5,3             | M 6                          | 10,4            | 78    | 1 320                  | 865                     | 0,132 | LUNF 16   | LUNF 16-2LS                 |
| 20      | 45     | 32    | 25         | 42             | 24             | 18             | 7,5            | 45  | 32    | 60  | 6,6             | M 8                          | 10,8            | 60    | 2 000                  | 1 370                   | 0,215 | LUNF 20   | LUNF 20-2LS                 |
| 25      | 58     | 40    | 30         | 51             | 29             | 22             | 8,5            | 60  | 40    | 78  | 8,4             | M 10                         | 13,2            | 60    | 2 900                  | 2 040                   | 0,443 | LUNF 25   | LUNF 25-2LS                 |
| 30      | 68     | 47    | 35         | 60             | 34             | 22             | 9,5            | 68  | 45    | 87  | 8,4             | M 10                         | 14,2            | 50    | 4 650                  | 3 250                   | 0,67  | LUNF 30   | LUNF 30-2LS                 |
| 40      | 80     | 62    | 45         | 77             | 44             | 26             | 11             | 86  | 58    | 108 | 10,5            | M 12                         | 18,7            | 50    | 7 800                  | 5 200                   | 1,21  | LUNF 40   | LUNF 40-2LS                 |
| 50      | 100    | 75    | 50         | 88             | 49             | 35             | 11             | 108 | 50    | 132 | 13,5            | M 16                         | 23,6            | 50    | 11 200                 | 6 950                   | 2,02  | LUNF 50   | LUNF 50-2LS                 |

I gruppi di guida LUNF sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LUNF 20-2LS/HV6.


Per questi gruppi sono disponibili supporti albero adatti, appellativo LRCB/LRCC. Vedi pagina 47 per maggiori dettagli.

 $<sup>^{1)}</sup>$  Larghezza minima del settore sul diametro F  $_{\rm W}$  .  $^{2)}$  Per viti con esagono incassato a norma DIN 912 / ISO 4762.

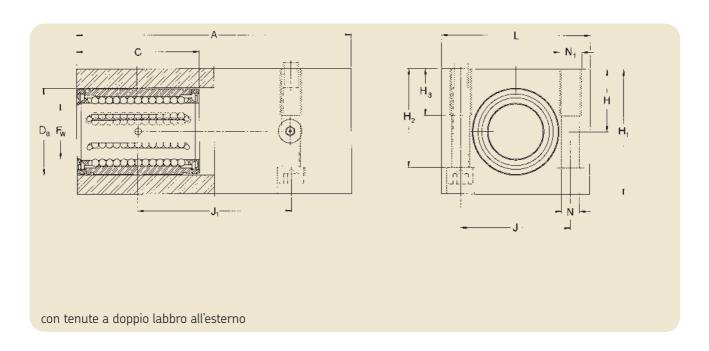
## Gruppi di guida assiale flangiati – LVCR

alloggiamento chiuso

- LVCR con cuscinetto LBCR



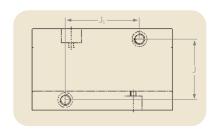
| Dimer | nsioni |       |     |       |       |     |     |                 | Valori gen | erali di carico         | Massa | <b>Appellativi</b><br>Gruppo di quida as            |
|-------|--------|-------|-----|-------|-------|-----|-----|-----------------|------------|-------------------------|-------|-----------------------------------------------------|
| $F_w$ | Α      | $A_1$ | С   | $D_a$ | $D_2$ | J   | L   | N <sup>1)</sup> | din.<br>C  | stat.<br>C <sub>o</sub> |       | siale <sup>2)</sup> con 2 tenute a<br>doppio labbro |
| mm    |        |       |     |       |       |     |     |                 | N          |                         | kg    | _                                                   |
| 12    | 20     | 8     | 32  | 22    | 32    | 30  | 42  | 5,5             | 1 160      | 980                     | 0,113 | LVCR 12-2LS                                         |
| 16    | 22     | 8     | 36  | 26    | 38    | 35  | 50  | 5,5             | 1 500      | 1 290                   | 0,161 | LVCR 16-2LS                                         |
| 20    | 28     | 10    | 45  | 32    | 46    | 42  | 60  | 6,6             | 2 240      | 2 040                   | 0,314 | LVCR 20-2LS                                         |
| 25    | 40     | 12    | 58  | 40    | 58    | 54  | 74  | 6,6             | 3 350      | 3 350                   | 0,655 | LVCR 25-2LS                                         |
| 30    | 48     | 14    | 68  | 47    | 66    | 60  | 84  | 9               | 5 600      | 5 700                   | 0,98  | LVCR 30-2LS                                         |
| 40    | 56     | 16    | 80  | 62    | 90    | 78  | 108 | 11              | 9 000      | 8 150                   | 1,91  | LVCR 40-2LS                                         |
| 50    | 72     | 18    | 100 | 75    | 110   | 98  | 130 | 11              | 13 400     | 12 200                  | 3,27  | LVCR 50-2LS                                         |
| 60    | 95     | 22    | 125 | 90    | 135   | 120 | 160 | 13,5            | 20 400     | 18 000                  | 5,92  | LVCR 60-2LS                                         |
| 80    | 125    | 25    | 165 | 120   | 180   | 155 | 200 | 13,5            | 37 500     | 32 000                  | 13,3  | LVCR 80-2LS                                         |


I gruppi di guida LVCR sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LVCR 20-2LS/HV6.

I gruppi di guida assiale LVCR con dimensioni  $F_{\rm w}$  12-50 sono disponibili anche con manicotti a sfere autoallineanti Appellativo: ad es. LVCD 12-2LS.

 $<sup>^{\</sup>tiny{1)}}$  Per viti a esagono incassato a norma DIN 912 / ISO 4762.  $^{\tiny{2)}}$  I manicotti a sfere di questi gruppi sono fissati con perni a norma DIN 1470. Non è prevista la rilubrificazione.

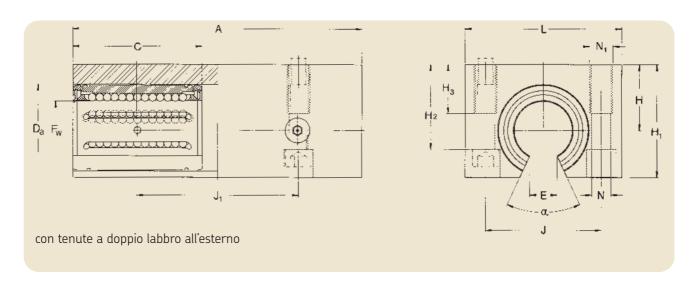
# Gruppi di guida assiale tandem – LTCD alloggiamento chiuso, rilubrificabile


- versione LTCD con cuscinetto LBCD, autoallineante



| Dimer       | nsioni |     |       |            |       |                |                |     |       |     |                 |                              | Valori ge<br>di carico |                         | Massa | <b>Appellativi</b><br>Gruppo di guida |
|-------------|--------|-----|-------|------------|-------|----------------|----------------|-----|-------|-----|-----------------|------------------------------|------------------------|-------------------------|-------|---------------------------------------|
| $F_{\rm w}$ | Α      | С   | $D_a$ | H<br>±0,01 | $H_1$ | H <sub>2</sub> | H <sub>3</sub> | J   | $J_1$ | L   | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | din.<br>C              | stat.<br>C <sub>o</sub> |       | assiale con tenute a<br>doppio labbro |
| mm          |        |     |       |            |       |                |                |     |       |     |                 | _                            | N                      |                         | kg    | _                                     |
| 12          | 76     | 32  | 22    | 18         | 35    | 27             | 13             | 30  | 40    | 42  | 5,3             | M 6                          | 1 760                  | 1 630                   | 0,236 | LTCD 12-2LS                           |
| 16          | 84     | 36  | 26    | 22         | 41,5  | 33             | 13             | 36  | 45    | 50  | 5,3             | M 6                          | 2 160                  | 1 730                   | 0,372 | LTCD 16-2LS                           |
| 20          | 104    | 45  | 32    | 25         | 49,5  | 39,5           | 18             | 45  | 55    | 60  | 6,4             | M 8                          | 3 200                  | 2 750                   | 0,67  | LTCD 20-2LS                           |
| 25          | 130    | 58  | 40    | 30         | 59,5  | 47             | 22             | 54  | 70    | 74  | 8,4             | M 10                         | 4 750                  | 4 150                   | 1,236 | LTCD 25-2LS                           |
| 30          | 152    | 68  | 47    | 35         | 69,5  | 55             | 26             | 62  | 85    | 84  | 10,5            | M 12                         | 7 500                  | 6 550                   | 1,87  | LTCD 30-2LS                           |
| 40          | 176    | 80  | 62    | 45         | 89,5  | 71             | 34             | 80  | 100   | 108 | 13              | M 16                         | 12 700                 | 10 400                  | 3,55  | LTCD 40-2LS                           |
| 50          | 224    | 100 | 75    | 50         | 99,5  | 81             | 34             | 100 | 125   | 130 | 13              | M 16                         | 18 300                 | 14 000                  | 5,92  | LTCD 50-2LS                           |

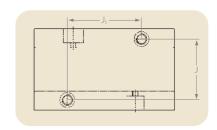
I gruppi di guida LTCD sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LTCD 20-2LS/HV6.


Per i supporti di estremità LSCS/LSNS adatti per questi gruppi di guida, vedere le pagine 44/45.



<sup>&</sup>lt;sup>1)</sup> Per 2 viti con esagono incassato a norma DIN 912 / ISO 4762.

# Gruppi di guida assiale tandem – LTCF alloggiamento aperto, rilubrificabile.

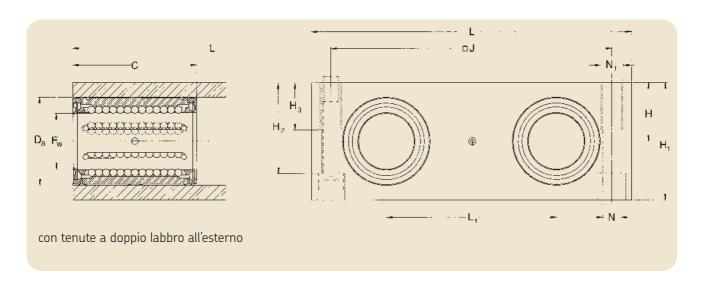

- versione LTCF con cuscinetto LBCF, autoallineante



| Dime<br>F <sub>w</sub> | nsioni<br>A | С   | D <sub>a</sub> | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | J   | $J_1$ | L   | N <sup>2)</sup> | N <sub>1</sub> <sup>2)</sup> | E <sup>1)</sup> | α    | Valori g<br>di carico<br>din.<br>C |        | Massa | Appellativi<br>Gruppo di guida<br>assiale con tenute a<br>doppio labbro |
|------------------------|-------------|-----|----------------|------------|----------------|----------------|----------------|-----|-------|-----|-----------------|------------------------------|-----------------|------|------------------------------------|--------|-------|-------------------------------------------------------------------------|
| mm                     |             |     |                |            |                |                |                |     |       |     |                 | _                            | mm              | grad | li N                               |        | kg    | _                                                                       |
| 12                     | 76          | 32  | 22             | 18         | 29             | 23,5           | 13             | 30  | 40    | 42  | 5,3             | M 6                          | 7,6             | 78   | 1 760                              | 1 630  | 0,178 | LTCF 12-2LS                                                             |
| 16                     | 84          | 36  | 26             | 22         | 35             | 28             | 13             | 36  | 45    | 50  | 5,3             | M 6                          | 10,4            | 78   | 2 160                              | 1 730  | 0,284 | LTCF 16-2LS                                                             |
| 20                     | 104         | 45  | 32             | 25         | 42             | 33,5           | 18             | 45  | 55    | 60  | 6,4             | 8 M                          | 10,8            | 60   | 3 200                              | 2 750  | 0,62  | LTCF 20-2LS                                                             |
| 25                     | 130         | 58  | 40             | 30         | 51             | 40             | 22             | 54  | 70    | 74  | 8,4             | M 10                         | 13,2            | 60   | 4 750                              | 4 150  | 0,966 | LTCF 25-2LS                                                             |
| 30                     | 152         | 68  | 47             | 35         | 60             | 46,5           | 26             | 62  | 85    | 84  | 10,5            | M 12                         | 14,2            | 50   | 7 500                              | 6 550  | 1,49  | LTCF 30-2LS                                                             |
| 40                     | 176         | 80  | 62             | 45         | 77             | 61             | 34             | 80  | 100   | 108 | 13              | M 16                         | 18,7            | 50   | 12 700                             | 10 400 | 2,81  | LTCF 40-2LS                                                             |
| 50                     | 224         | 100 | 75             | 50         | 88             | 72             | 34             | 100 | 125   | 130 | 13              | M 16                         | 23,6            | 50   | 18 300                             | 14 000 | 4,83  | LTCF 50-2LS                                                             |

I gruppi di guida LTCF sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LTCF 20-2LS/HV6.

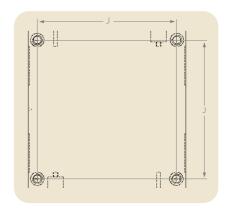
Per i supporti per alberi adatti a questi gruppi di guida, appellativo LRCB/LRCC, vedi pagina 47.




 $<sup>^{\</sup>rm 1)}$  Larghezza minima del settore sul diametro  $\rm F_w.$   $^{\rm 2)}$  Per 2 viti con esagono incassato a norma DIN 912 / ISO 4762.

## Gruppi di guida assiale quadro – LQCR/LQCD

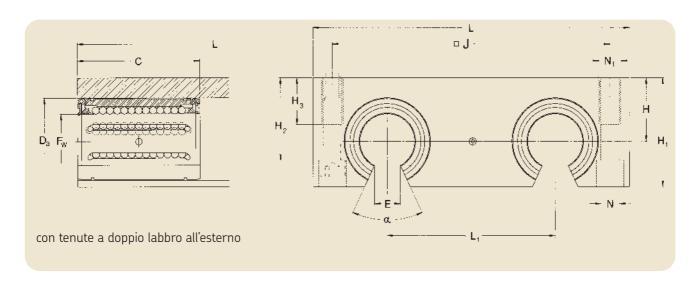
alloggiamento chiuso, rilubrificabile.


- versione LQCR con cuscinetto LBCR
- versione LQCD con cuscinetto LBCD, autoallineante



| Dimer          | nsioni |                |            |                |                |                |     |     |                |                 |                              | Valori ger<br>di carico<br>din. | nerali<br>stat. | Massa | Appellativi<br>Gruppo di guida<br>assiale con tenute |
|----------------|--------|----------------|------------|----------------|----------------|----------------|-----|-----|----------------|-----------------|------------------------------|---------------------------------|-----------------|-------|------------------------------------------------------|
| F <sub>w</sub> | С      | D <sub>a</sub> | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | J   | L   | L <sub>1</sub> | N <sup>2)</sup> | N <sub>1</sub> <sup>2)</sup> | С                               | $C_0$           |       | a doppio labbro                                      |
| mm             |        |                |            |                |                |                |     |     |                |                 | _                            | Ν                               |                 | kg    | _                                                    |
| 8              | 25     | 16             | 11,5       | 23             | 17,5           | 11             | 55  | 65  | 32             | 4,3             | M 5                          | 1 290                           | 1 420           | 0,226 | LQCR 8-2LS <sup>1)</sup>                             |
| 12             | 32     | 22             | 16         | 32             | 25             | 13             | 73  | 85  | 42             | 5,3             | M 6                          | 2 850                           | 3 250           | 0,492 | LQCD 12-2LS                                          |
| 16             | 36     | 26             | 18         | 36             | 29             | 13             | 88  | 100 | 54             | 5,3             | M 6                          | 3 450                           | 3 450           | 0,744 | LQCD 16-2LS                                          |
| 20             | 45     | 32             | 23         | 46             | 37,5           | 18             | 115 | 130 | 72             | 6,6             | M 8                          | 5 200                           | 5 500           | 1,68  | LQCD 20-2LS                                          |
| 25             | 58     | 40             | 28         | 56             | 45             | 22             | 140 | 160 | 88             | 8,4             | M 10                         | 7 650                           | 8 150           | 3,022 | LQCD 25-2LS                                          |
| 30             | 68     | 47             | 32         | 64             | 50,5           | 26             | 158 | 180 | 96             | 10,5            | M 12                         | 12 200                          | 12 900          | 4,27  | LQCD 30-2LS                                          |
| 40             | 80     | 62             | 40         | 80             | 64             | 34             | 202 | 230 | 122            | 13,5            | M 16                         | 20 800                          | 20 800          | 8,38  | LQCD 40-2LS                                          |
| 50             | 100    | 75             | 48         | 96             | 80             | 34             | 250 | 280 | 152            | 13,5            | M 16                         | 30 000                          | 28 000          | 14,99 | LQCD 50-2LS                                          |

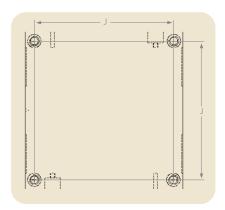
I gruppi di guida LQCR/LQCD sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LQCR/LQCD 20-2LS/HV6.


Per i supporti di estremità adatti a queste unità di guida, appellativo LEAS ... A e LEAS ... B, vedi pagina 46.



Gruppo con manicotto a sfere non rilubrificabile, non autoallineante.
 Per 4 viti a testa cilindrica con esagono incassato a norma DIN 912 / ISO 4762.

# Gruppi di guida assiale quadro – LQCF alloggiamento aperto, rilubrificabile.


- versione LQCF con cuscinetto LBCF, autoallineante



| Dime<br>F <sub>w</sub> | nsioni<br>C | D <sub>a</sub> | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | J   | L   | L <sub>1</sub> | N <sup>2)</sup> | N <sub>1</sub> <sup>2)</sup> | E <sup>1)</sup> | α     | Valori ge<br>di carico<br>din.<br>C | nerali<br>stat.<br>C <sub>0</sub> | Massa | Appellativi<br>Gruppo di guida<br>assiale con tenute<br>a doppio labbro |
|------------------------|-------------|----------------|------------|----------------|----------------|----------------|-----|-----|----------------|-----------------|------------------------------|-----------------|-------|-------------------------------------|-----------------------------------|-------|-------------------------------------------------------------------------|
| mm                     |             |                |            |                |                |                |     |     |                |                 | _                            | mm              | gradi | Ν                                   |                                   | kg    | _                                                                       |
| 12                     | 32          | 22             | 18         | 30             | 23,4           | 13             | 73  | 85  | 42             | 5,3             | M 6                          | 7,6             | 78    | 2 850                               | 3 250                             | 0,426 | LQCF 12-2LS                                                             |
| 16                     | 36          | 26             | 22         | 35             | 28,4           | 13             | 88  | 100 | 54             | 5,3             | M 6                          | 10,4            | 78    | 3 450                               | 3 450                             | 0,698 | LQCF 16-2LS                                                             |
| 20                     | 45          | 32             | 25         | 42             | 33,5           | 18             | 115 | 130 | 72             | 6,6             | M 8                          | 10,8            | 60    | 5 200                               | 5 500                             | 1,42  | LQCF 20-2LS                                                             |
| 25                     | 58          | 40             | 30         | 51             | 40             | 22             | 140 | 160 | 88             | 8,4             | M 10                         | 13,2            | 60    | 7 650                               | 8 150                             | 2,572 | LQCF 25-2LS                                                             |
| 30                     | 68          | 47             | 35         | 60             | 46,5           | 26             | 158 | 180 | 96             | 10,5            | M 12                         | 14,2            | 50    | 12 200                              | 12 900                            | 3,79  | LQCF 30-2LS                                                             |
| 40                     | 80          | 62             | 45         | 77             | 61             | 34             | 202 | 230 | 122            | 13,5            | M 16                         | 18,7            | 50    | 20 800                              | 20 800                            | 7,8   | LQCF 40-2LS                                                             |
| 50                     | 100         | 75             | 55         | 93             | 77             | 34             | 250 | 280 | 152            | 13,5            | M 16                         | 23,6            | 50    | 30 000                              | 28 000                            | 13,96 | LQCF 50-2LS                                                             |

I gruppi di guida LQCF sono disponibili a richiesta in acciaio inox. Appellativo: ad es. LQCF 20-2LS/HV6.

Per i supporti per alberi adatti a questi gruppi di guida, appellativo LRCB/LRCC, vedi pagina 47.



 $<sup>^{1)}</sup>$  Larghezza minima del settore sul diametro  $F_{w}.$   $^{2)}$  Per 4 viti a testa cilindrica con esagono incassato a norma DIN 912 / ISO 4762.

### Supporti per alberi

Per quanto riguarda gli alberi, si distingue tra supporti di estremità e supporti per alberi: i primi supportano l'albero solo alle estremità, mentre i secondi lungo l'intera lunghezza e richiedono per questo l'uso di gruppi di guida assiale aperti.

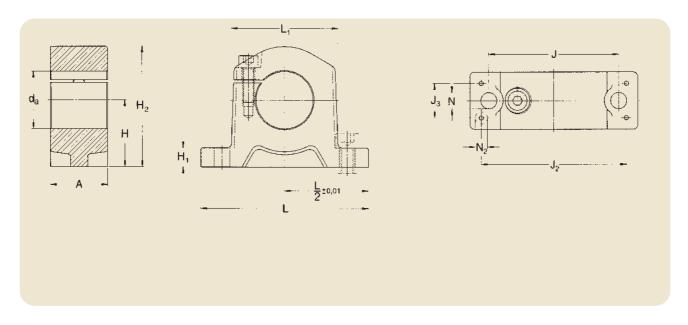
I supporti di estremità LSCS sono realizzati in alluminio pressofuso e concepiti per serrare l'albero all'estremità. Questi supporti sono forniti di serie con due fori sulla base, utilizzati per il fissaggio. I supporti di estremità LSCS sono adatti ad alberi con diametro da 8 a 80 mm.

I supporti di estremità LSNS e LSHS sono realizzati in alluminio estruso. Il fissaggio avviene direttamente sulla superficie di supporto con viti passanti o mediante i fori filettati. I supporti di estremità LSNS e LSHS sono disponibili per alberi con diametro da 12 a 50 mm.

# Supporti di estremità LEBS/LEAS tandem

In abbinamento ai gruppi di guida assiale duo e guadro con manicotti a sfere ISO della serie 1 (LBBR), sono disponibili i supporti di estremità LEBS tandem nell'esecuzione "A", nei quali il supporto di estremità è fisso e il manicotto a sfere si muove assialmente. I supporti di estremità LEBS sono disponibili per alberi con diametro da 12 a 50 mm. Per i gruppi con manicotti a sfere ISO serie 3 (LBC/LBHT) i supporti di estremità LEAS tandem sono disponibili sia nell'esecuzione "A" che "B". L'esecuzione "B" consente il movimento assiale dell'albero attraverso un gruppo di guida assiale fisso. I supporti di estremità LEAS sono disponibili per alberi con diametro da 8 a 50 mm.

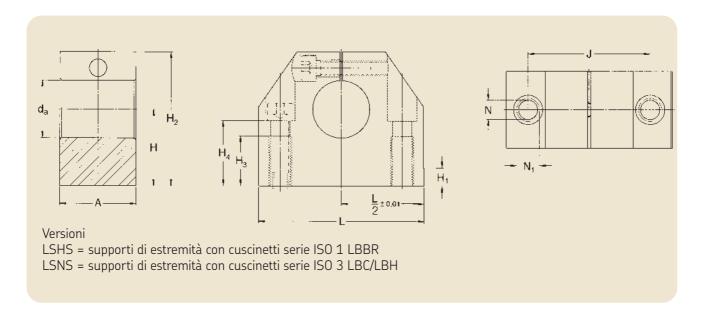
#### Supporti per alberi LRCB/LRCC


Nel caso di gruppi di guida assiale sottoposti a carichi elevati e/o corse lunghe, la SKF raccomanda l'uso di supporti per alberi in grado di compensare l'inflessione dell'albero. In questo tipo di applicazioni è necessario un supporto su tutta la lunghezza dell'albero o quanto meno su un tratto di essa. La SKF offre supporti per alberi con diametro da 12 a 80 mm. Sono disponibili due diversi tipi di supporto: gli LRCB con fori già praticati e gli LRCC non forati.

Nota: i supporti per alberi richiedono l'impiego di gruppi di guida assiale aperti.



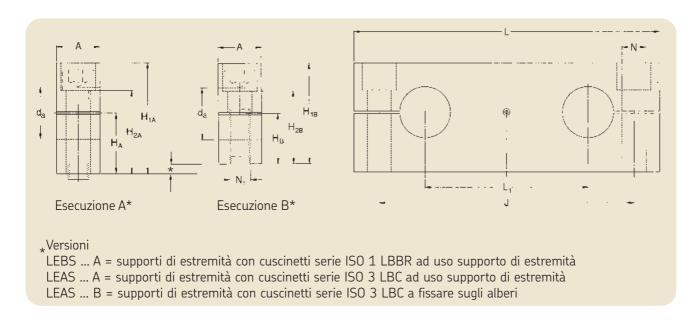
**5KF** 43


# Supporti di estremità – LSCS



| Dimen   | ısioni |            |                |                |     |       |       |     |       |                 |       | Massa | Appellativi<br>supporto di |
|---------|--------|------------|----------------|----------------|-----|-------|-------|-----|-------|-----------------|-------|-------|----------------------------|
| $d_{a}$ | А      | H<br>±0,01 | H <sub>1</sub> | H <sub>2</sub> | J   | $J_2$ | $J_3$ | L   | $L_1$ | N <sup>1)</sup> | $N_2$ |       | estremità                  |
| mm      |        |            |                |                |     |       |       |     |       |                 |       | kg    | _                          |
| 8       | 10     | 15         | 5,5            | 25             | 25  | 35    | 5     | 45  | 19    | 4,3             | 2,7   | 0,012 | LSCS 8                     |
| 12      | 12     | 20         | 6              | 32,5           | 32  | 42    | 6     | 52  | 25    | 5,3             | 3,2   | 0,023 | LSCS 12                    |
| 16      | 15     | 20         | 7              | 35,5           | 40  | 46    | 7,5   | 56  | 31,8  | 5,3             | 4,3   | 0,034 | LSCS 16                    |
| 20      | 20     | 25         | 8              | 43,5           | 45  | 58    | 10    | 70  | 37    | 5,3             | 5,3   | 0,065 | LSCS 20                    |
| 25      | 28     | 30         | 10             | 53             | 60  | 68    | 16    | 80  | 48    | 6,4             | 6,4   | 0,14  | LSCS 25                    |
| 30      | 30     | 35         | 10             | 63             | 68  | 76    | 18    | 88  | 56    | 8,4             | 6,4   | 0,20  | LSCS 30                    |
| 40      | 36     | 45         | 12             | 81             | 86  | 94    | 22    | 108 | 71    | 10,5            | 8,4   | 0,47  | LSCS 40                    |
| 50      | 49     | 50         | 14             | 92,5           | 108 | 116   | 30    | 135 | 86    | 10,5            | 10,5  | 0,68  | LSCS 50                    |
| 60      | 62     | 60         | 18             | 112            | 132 | 138   | 40    | 160 | 105   | 13              | 13    | 1,29  | LSCS 60                    |
| 80      | 85     | 80         | 22             | 147,5          | 170 | 180   | 60    | 205 | 136   | 17              | 15    | 3,01  | LSCS 80                    |

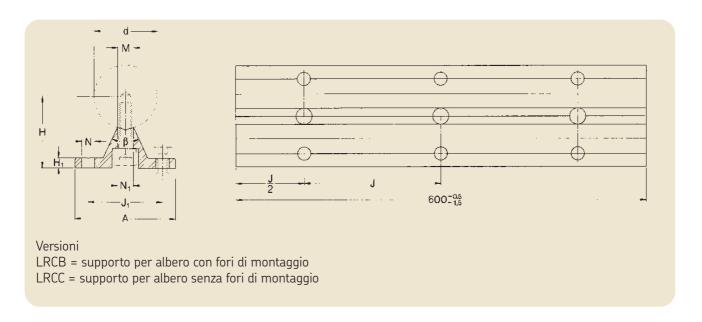
<sup>&</sup>lt;sup>1)</sup> Per viti a esagono incassato a norma DIN 912 / ISO 4762.


# Supporti di estremità – LSNS/LSHS in combinazione con manicotti a sfere serie ISO 1 e serie ISO 3



| Dimen                | sioni |            |       |                |                |       |     |                        |                 |                              | Massa | Appellativi              |
|----------------------|-------|------------|-------|----------------|----------------|-------|-----|------------------------|-----------------|------------------------------|-------|--------------------------|
| $\boldsymbol{d}_{a}$ | А     | H<br>±0,01 | $H_1$ | H <sub>2</sub> | H <sub>3</sub> | $H_4$ | J   | <b>L</b> <sup>2)</sup> | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> |       | supporto di<br>estremità |
| mm                   |       |            |       |                |                |       |     |                        |                 |                              | kg    | _                        |
| 12                   | 20    | 20         | 6     | 35             | 13             | 16,5  | 30  | 43                     | 5,3             | M 6                          | 0,06  | LSNS 12                  |
| 16                   | 24    | 25         | 7     | 42             | 18             | 21    | 38  | 53                     | 6,6             | M 8                          | 0,11  | LSNS 16                  |
| 20                   | 30    | 30         | 7,5   | 50             | 22             | 25    | 42  | 60                     | 8,4             | M 10                         | 0,17  | LSNS 20                  |
| 25                   | 38    | 35         | 8,5   | 61             | 26             | 30    | 56  | 78                     | 10,5            | M 12                         | 0,34  | LSNS 25                  |
| 30                   | 40    | 40         | 9,5   | 70             | 26             | 34    | 64  | 87                     | 10,5            | M 12                         | 0,46  | LSNS 30                  |
| 40                   | 48    | 50         | 11    | 90             | 34             | 44    | 82  | 108                    | 13,5            | M 16                         | 0,90  | LSNS 40                  |
| 50                   | 58    | 60         | 11    | 105            | 43             | 49    | 100 | 132                    | 17,5            | M 20                         | 1,45  | LSNS 50                  |
| 12                   | 18    | 19         | _     | 33             | 13             | 16,5  | 27  | 40                     | 5,3             | M 6                          | 0,05  | LSHS 12                  |
| 16                   | 20    | 22         | _     | 38             | 13             | 18    | 32  | 45                     | 5,3             | M 6                          | 0,07  | LSHS 16                  |
| 20                   | 24    | 25         | _     | 45             | 18             | 21    | 39  | 53                     | 6,6             | M 8                          | 0,11  | LSHS 20                  |
| 25                   | 28    | 31         | _     | 54             | 22             | 25    | 44  | 62                     | 8,4             | M 10                         | 0,17  | LSHS 25                  |
| 30                   | 30    | 34         | _     | 60             | 22             | 29    | 49  | 67                     | 8,4             | M 10                         | 0,22  | LSHS 30                  |
| 40                   | 40    | 42         | _     | 76             | 26             | 37    | 66  | 87                     | 10,5            | M 12                         | 0,47  | LSHS 40                  |
| 50                   | 50    | 50         | _     | 92             | 34             | 44    | 80  | 103                    | 13,5            | M 16                         | 0,82  | LSHS 50                  |

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Per viti a esagono incassato a norma DIN 912 / ISO 4762.  $^{\mbox{\tiny 2)}}$  Tolleranza L/2  $\pm$  0,01 solo per l'esecuzione LSNS.


# Supporti di estremità tandem – LEAS/LEBS in combinazione con manicotti a sfere e alberi serie ISO 1 e serie ISO 3



| Dime    | nsioni |                          |          |          |                          |          |                 |     |     |                |                 |           | Massa  |      | Appellativi<br>Supporto di e<br>tandem |           | ie ISO |
|---------|--------|--------------------------|----------|----------|--------------------------|----------|-----------------|-----|-----|----------------|-----------------|-----------|--------|------|----------------------------------------|-----------|--------|
|         |        |                          |          |          |                          |          |                 |     |     |                |                 |           | Esecuz | ione | Esecuzione                             |           |        |
| $d_{a}$ | Α      | H <sub>A</sub><br>±0,015 | $H_{1A}$ | $H_{2A}$ | H <sub>B</sub><br>±0,015 | $H_{1B}$ | H <sub>2B</sub> | J   | L   | L <sub>1</sub> | N <sup>1)</sup> | $N_1^{1}$ | Α      | В    | А                                      | В         |        |
| mm      |        |                          |          |          |                          |          |                 |     |     |                |                 | _         | kg     |      | _                                      |           |        |
| 12      | 15     | 17                       | 30       | 21,5     | _                        | _        | _               | 64  | 80  | 40             | 6,6             | _         | 0,08   | _    | LEBS 12 A                              | _         | 1      |
| 16      | 15     | 19,5                     | 35       | 26,5     | _                        | _        | _               | 80  | 96  | 52             | 6,6             | _         | 0,11   | _    | LEBS 16 A                              | _         | 1      |
| 20      | 18     | 22                       | 40       | 29       | _                        | _        | _               | 97  | 115 | 63             | 9               | _         | 0,17   | _    | LEBS 20 A                              | _         | 1      |
| 25      | 20     | 27                       | 50       | 36,5     | _                        | _        | _               | 115 | 136 | 75             | 11              | _         | 0,28   | _    | LEBS 25 A                              | _         | 1      |
| 30      | 20     | 31                       | 56       | 42,5     | _                        | _        | _               | 125 | 146 | 80             | 11              | _         | 0,32   | _    | LEBS 30 A                              | _         | 1      |
| 40      | 25     | 38                       | 70       | 54       | _                        | _        | _               | 160 | 184 | 97             | 13,5            | _         | 0,63   | _    | LEBS 40 A                              | _         | 1      |
| 50      | 30     | 43                       | 80       | 59       | _                        | _        | _               | 180 | 210 | 107            | 17,5            | _         | 0,90   | _    | LEBS 50 A                              | _         | 1      |
| 8       | 12     | 12,5                     | 23       | 16       | 11                       | 22       | 15              | 52  | 65  | 32             | 5,5             | M 5       | 0,04   | 0,04 | LEAS 8 A                               | LEAS 8 B  | 3      |
| 12      | 14     | 18                       | 32       | 23,5     | 14                       | 28       | 19,5            | 70  | 85  | 42             | 6,6             | M 6       | 0,09   | 0,07 | LEAS 12 A                              | LEAS 12 B | 3      |
| 16      | 18     | 20                       | 36       | 26,5     | 17                       | 34       | 23,5            | 82  | 100 | 54             | 9               | M 8       | 0,14   | 0,13 | LEAS 16 A                              | LEAS 16 B | 3      |
| 20      | 20     | 25                       | 46       | 32,5     | 21                       | 42       | 28,5            | 108 | 130 | 72             | 11              | M 10      | 0,25   | 0,22 | LEAS 20 A                              | LEAS 20 B | 3      |
| 25      | 25     | 30                       | 56       | 40       | 26                       | 52       | 36              | 132 | 160 | 88             | 13,5            | M 12      | 0,47   | 0,44 | LEAS 25 A                              | LEAS 25 B | 3      |
| 30      | 25     | 35                       | 64       | 48       | 29                       | 58       | 42              | 150 | 180 | 96             | 13,5            | M 12      | 0,62   | 0,56 | LEAS 30 A                              | LEAS 30 B | 3      |
| 40      | 30     | 44                       | 80       | 59       | 36                       | 72       | 51              | 190 | 230 | 122            | 17,5            | M 16      | 1,15   | 1,00 | LEAS 40 A                              | LEAS 40 B | 3      |
| 50      | 30     | 52                       | 96       | 75       | 44                       | 88       | 67              | 240 | 280 | 152            | 17,5            | M 16      | 1,70   | 1,52 | LEAS 50 A                              | LEAS 50 B | 3      |

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Per viti a esagono incassato a norma DIN 912 / ISO 4762.

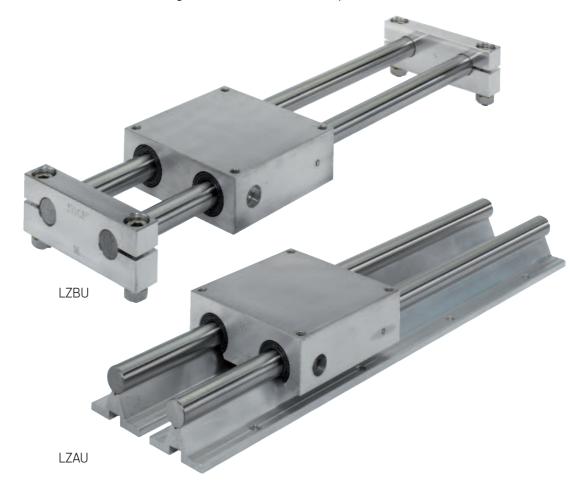
# Supporti per alberi – LRCB/LRCC



| Dimen | sioni |            |                |     |       |      |                 |                              |       | <b>Massa</b><br>LRCB | <b>Appellativi</b><br>Supporto p | er albero     | Fissaggio albero¹) |
|-------|-------|------------|----------------|-----|-------|------|-----------------|------------------------------|-------|----------------------|----------------------------------|---------------|--------------------|
| d     | Α     | H<br>±0,02 | H <sub>1</sub> | J   | $J_1$ | М    | N <sup>1)</sup> | N <sub>1</sub> <sup>1)</sup> | β     |                      | con<br>fori                      | senza<br>fori | vite               |
| mm    | mm    |            |                |     |       |      |                 |                              | gradi | kg                   | _                                |               | _                  |
| 12    | 40    | 22         | 5              | 75  | 29    | 5,8  | 4,5             | 4,5                          | 50    | 0,53                 | LRCB 12                          | LRCC 12       | M 4x16             |
| 16    | 45    | 26         | 5              | 100 | 33    | 7    | 5,5             | 5,5                          | 50    | 0,64                 | LRCB 16                          | LRCC 16       | M 5x20             |
| 20    | 52    | 32         | 6              | 100 | 37    | 8,3  | 6,6             | 6,6                          | 50    | 0,92                 | LRCB 20                          | LRCC 20       | M 6x25             |
| 25    | 57    | 36         | 6              | 120 | 42    | 10,8 | 6,6             | 9                            | 50    | 1,08                 | LRCB 25                          | LRCC 25       | M 8x25             |
| 30    | 69    | 42         | 7              | 150 | 51    | 11   | 9               | 11                           | 50    | 1,41                 | LRCB 30                          | LRCC 30       | M 10x30            |
| 40    | 73    | 50         | 8              | 200 | 55    | 15   | 9               | 11                           | 50    | 1,85                 | LRCB 40                          | LRCC 40       | M 10x35            |
| 50    | 84    | 60         | 9              | 200 | 63    | 19   | 11              | 13,5                         | 46    | 2,45                 | LRCB 50                          | LRCC 50       | M 12x40            |
| 60    | 94    | 68         | 10             | 300 | 72    | 25   | 11              | 15,5                         | 46    | 3,25                 | LRCB 60                          | LRCC 60       | M 14x45            |
| 80    | 116   | 86         | 12             | 300 | 92    | 34   | 13,5            | 17,5                         | 46    | 4,40                 | LRCB 80                          | LRCC 80       | M 16x55            |

 $<sup>^{\</sup>mbox{\tiny 1)}}$  Per viti con esagono incassato a norma DIN 912 / ISO 4762 senza rondelle elastiche.

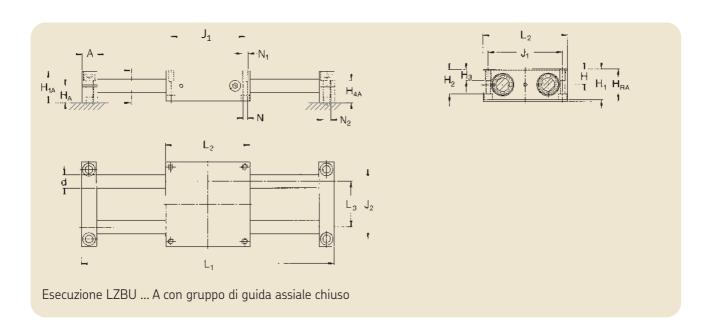
### Tavole lineari quadro senza motorizzazione


La tavola lineare chiusa LZBU quadro è composta da un gruppo di guida assiale chiuso quadro, due supporti di estremità tandem e due alberi della lunghezza richiesta. Il gruppo di guida è dotato di quattro manicotti a sfere autoallineanti LBCD-LS, ciascuno dei quali è a tenuta su un lato. L'esecuzione LZBU-"A" consente il movimento assiale del gruppo di guida, cioè gli alberi sono fissati al bancale della macchina mediante i supporti di estremità LEAS-"A". L'esecuzione LZBU-"B" è provvista di supporti di estremità LEAS-"B". Questa combinazione consente il movimento degli alberi con i relativi supporti di estremità nelle applicazioni in cui il gruppo di guida è fisso.

Le tavole lineari LZBU quadro possono essere fornite nelle dimensioni da 8 a 50 mm. Le tavole della di-

mensione 8 non sono autoallineanti e non prevedono la rilubrificazione. La descrizione delle tavole lineare chiuse quadro vale anche per la combinazione di gruppi di guida assiale serie 1 LQBR ... 2LS quadro con supporti di estremità LEBS tandem e alberi (solo a richiesta). Il diametro degli alberi disponibili va da 12 a 50 mm.

La tavola lineare aperta LZAU quadro è composta dal gruppo di guida assiale aperto quadro e due alberi di precisione completi dei relativi supporti. Il gruppo di guida è provvisto di quattro manicotti a sfere autoallineanti LBCF-"A-LS", ciascuno dei quali è a tenuta su un lato. La lunghezza delle tavole è in funzione della distanza tra i centri dei fori di fissaggio presenti sui supporti per alberi LRCB. La lunghezza totale deve essere sempre


un multiplo di questa distanza. Le tavole LZAU sono disponibili in dimensioni da 12 a 50 mm.



48 **5KF** 

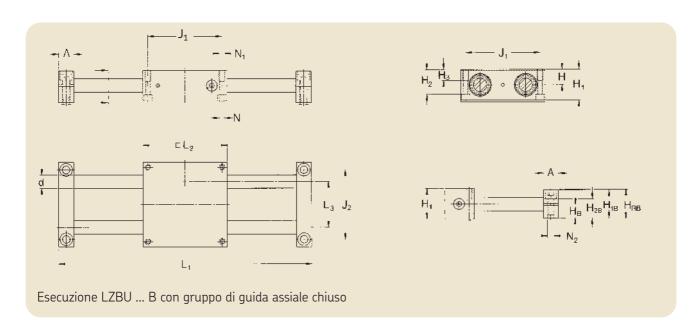
## Tavole lineari quadro - LZBU ... A

- versione LZBU con gruppo di guida chiuso LQCD, supporti di estremità LEAS-A\* e alberi
- \* L'esecuzione "A" indica alberi fissi e gruppo di guida mobile



| Din | nens | ioni                   |                        |                 |                 |             |       |                |                |       |                |                              |                |                |                 |                              |                              | Valori di | carico4)                | Appellativi <sup>1)</sup>  |
|-----|------|------------------------|------------------------|-----------------|-----------------|-------------|-------|----------------|----------------|-------|----------------|------------------------------|----------------|----------------|-----------------|------------------------------|------------------------------|-----------|-------------------------|----------------------------|
| d   | Α    | H <sub>RA</sub> ± 0,03 | H <sub>A</sub> ± 0,015 | H <sub>1A</sub> | H <sub>2A</sub> | H<br>± 0,01 | $H_1$ | H <sub>2</sub> | H <sub>3</sub> | $J_1$ | J <sub>2</sub> | L <sub>1</sub> <sup>2)</sup> | L <sub>2</sub> | L <sub>3</sub> | N <sup>3)</sup> | N <sub>1</sub> <sup>3)</sup> | N <sub>2</sub> <sup>3)</sup> | din.<br>C | stat.<br>C <sub>o</sub> |                            |
| mn  | n    |                        |                        |                 |                 |             |       |                |                |       |                |                              |                |                |                 | -                            | mm                           | N         |                         | _                          |
| 8   | 12   | 24                     | 12,5                   | 23              | 16              | 11,5        | 23    | 17,5           | 11             | 55    | 52             | 600                          | 65             | 32             | 4,3             | M 5                          | 5,5                          | 1 290     | 1 420                   | LZBU 8 A-2LS <sup>5)</sup> |
| 12  | 14   | 34                     | 18                     | 32              | 23,5            | 16          | 32    | 25             | 13             | 73    | 70             | 900                          | 85             | 42             | 5,3             | M 6                          | 6,6                          | 2 850     | 3 250                   | LZBU 12 A-2LS              |
| 16  | 18   | 38                     | 20                     | 37              | 26,5            | 18          | 36    | 29             | 13             | 88    | 82             | 1 500                        | 100            | 54             | 5,3             | M 6                          | 9                            | 3 450     | 3 450                   | LZBU 16 A-2LS              |
| 20  | 20   | 48                     | 25                     | 46              | 32,5            | 23          | 46    | 37,5           | 18             | 115   | 108            | 1 800                        | 130            | 72             | 6,6             | M 8                          | 11                           | 5 200     | 5 500                   | LZBU 20 A-2LS              |
| 25  | 25   | 58                     | 30                     | 56              | 40              | 28          | 56    | 45             | 22             | 140   | 132            | 1 800                        | 160            | 88             | 8,4             | M 10                         | 13,5                         | 7 650     | 8 150                   | LZBU 25 A-2LS              |
| 30  | 25   | 67                     | 35                     | 64              | 48              | 32          | 64    | 50,5           | 26             | 158   | 150            | 2 400                        | 180            | 96             | 10,5            | M 12                         | 13,5                         | 12 200    | 12 900                  | LZBU 30 A-2LS              |
| 40  | 30   | 84                     | 44                     | 80              | 59              | 40          | 80    | 64             | 34             | 202   | 190            | 3 000                        | 230            | 122            | 13,5            | M 16                         | 17,5                         | 20 800    | 20 800                  | LZBU 40 A-2LS              |
| 50  | 30   | 100                    | 52                     | 96              | 75              | 48          | 96    | 80             | 34             | 250   | 240            | 3 000                        | 280            | 152            | 13,5            | M 16                         | 17,5                         | 30 000    | 28 000                  | LZBU 50 A-2LS              |

<sup>&</sup>lt;sup>1)</sup> L'appellativo per una tavola lineare LZBU quadro con albero di ad es. 1200 mm LZBU ...-2LS x 1200. Fornito come kit completo.
<sup>2)</sup> Lunghezza massima consigliata dell'albero. Sono disponibili alberi di lunghezza maggiore su richiesta. Le tolleranze della lunghezza di questi alberi sono in conformità a DIN 7168 approssimativamente.


<sup>&</sup>lt;sup>3)</sup> Viti appropriate con esagono incassato a norma DIN 912 / ISO 4762.

<sup>4)</sup> Valido solo per carico uniforme sui quattro manicotti a sfere LBC ... A. Al momento della consegna, tenere presente la deviazione dell'albero ed eventual mente rivedere il valore di carico.

<sup>5)</sup> I gruppi con manicotti a sfere LBCR non sono rilubrificabili né autoallineanti.

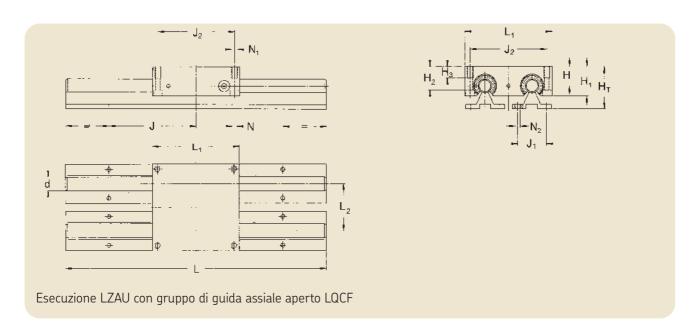
## Tavole lineari quadro - LZBU ... B

- versione LZBU con gruppo di guida chiuso LQCD, supporti di estremità LEAS-B\* e alberi
- \* L'esecuzione "B" indica gruppo fisso e alberi mobili



| Din | nens | ioni                   |                |    |          |             |                |                |                |       |       |                              |                |       |                 |                              |                              | Valori di |                         | Appellativi <sup>1)</sup>  |
|-----|------|------------------------|----------------|----|----------|-------------|----------------|----------------|----------------|-------|-------|------------------------------|----------------|-------|-----------------|------------------------------|------------------------------|-----------|-------------------------|----------------------------|
| d   | Α    | H <sub>RB</sub> ± 0,03 | H <sub>B</sub> |    | $H_{2B}$ | H<br>± 0,01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | $J_1$ | $J_2$ | L <sub>1</sub> <sup>2)</sup> | L <sub>2</sub> | $L_3$ | N <sup>3)</sup> | N <sub>1</sub> <sup>3)</sup> | N <sub>2</sub> <sup>3)</sup> | din.<br>C | stat.<br>C <sub>o</sub> |                            |
| mn  | า    |                        |                |    |          |             |                |                |                |       |       |                              |                |       |                 | -                            | -                            | N         |                         | -                          |
| 8   | 12   | 22,5                   | 11             | 22 | 15       | 11,5        | 23             | 17,5           | 11             | 55    | 52    | 600                          | 65             | 32    | 4,3             | M 5                          | M 5                          | 1 290     | 1 420                   | LZBU 8 B-2LS <sup>5)</sup> |
| 12  | 14   | 30                     | 14             | 28 | 19,5     | 16          | 32             | 25             | 13             | 73    | 70    | 900                          | 85             | 42    | 5,3             | M 6                          | M 6                          | 2 850     | 3 250                   | LZBU 12 B-2LS              |
| 16  | 18   | 35                     | 17             | 34 | 23,5     | 18          | 36             | 29             | 13             | 88    | 82    | 1 500                        | 100            | 54    | 5,3             | M 6                          | M 8                          | 3 450     | 3 450                   | LZBU 16 B-2LS              |
| 20  | 20   | 44                     | 21             | 42 | 28,5     | 23          | 46             | 37,5           | 18             | 115   | 108   | 1 800                        | 130            | 72    | 6,6             | M 8                          | M 10                         | 5 200     | 5 500                   | LZBU 20 B-2LS              |
| 25  | 25   | 54                     | 26             | 52 | 36       | 28          | 56             | 45             | 22             | 140   | 132   | 1 800                        | 160            | 88    | 8,4             | M 10                         | M 12                         | 7 650     | 8 150                   | LZBU 25 B-2LS              |
| 30  | 25   | 61                     | 29             | 58 | 42       | 32          | 64             | 50,5           | 26             | 158   | 150   | 2 400                        | 180            | 96    | 10,5            | M 12                         | M 12                         | 12 200    | 12 900                  | LZBU 30 B-2LS              |
| 40  | 30   | 76                     | 36             | 72 | 51       | 40          | 80             | 64             | 34             | 202   | 190   | 3 000                        | 230            | 122   | 13,5            | M 16                         | M 16                         | 20 800    | 20 800                  | LZBU 40 B-2LS              |
| 50  | 30   | 92                     | 44             | 88 | 67       | 48          | 96             | 80             | 34             | 250   | 240   | 3 000                        | 280            | 152   | 13,5            | M 16                         | M 16                         | 30 000    | 28 000                  | LZBU 50 B-2LS              |

<sup>&</sup>lt;sup>1)</sup> L'appellativo per una tavola lineare LZBU quadro con albero di ad es. 1200 mm LZBU ...-2LS x 1200. Fornito come kit completo.
<sup>2)</sup> Lunghezza massima consigliata dell'albero. Sono disponibili alberi di lunghezza maggiore su richiesta. Le tolleranze della lunghezza di questi alberi sono in conformità a DIN 7168 approssimativamente.


<sup>&</sup>lt;sup>3)</sup> Viti appropriate con esagono incassato a norma DIN 912 / ISO 4762.

<sup>4)</sup> Valido solo per carico uniforme sui quattro manicotti a sfere LBC ... A. Al momento della consegna, tenere presente la deviazione dell'albero ed eventual mente rivedere il valore di carico.

5) I gruppi con manicotti a sfere LBCR non sono rilubrificabili né autoallineanti.

## Tavole lineari quadro - LZAU

- versione LZAU con gruppi di guida aperti LQCF e alberi supportati



| Dim | mensioni                 |    |                |                |                          |                 |                |                |                |                | Valori di       | carico <sup>4)</sup>         | Appellativi <sup>1)</sup>    |        |                |             |
|-----|--------------------------|----|----------------|----------------|--------------------------|-----------------|----------------|----------------|----------------|----------------|-----------------|------------------------------|------------------------------|--------|----------------|-------------|
|     |                          |    |                |                |                          |                 |                |                |                |                |                 |                              |                              | din.   | stat.          |             |
| d   | H <sub>T</sub><br>± 0,03 | Н  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub><br>± 0,01 | J <sub>3)</sub> | J <sub>1</sub> | J <sub>2</sub> | L <sub>1</sub> | L <sub>2</sub> | N <sup>2)</sup> | N <sub>1</sub> <sup>2)</sup> | N <sub>2</sub> <sup>2)</sup> | С      | C <sub>o</sub> |             |
| mm  |                          |    |                |                |                          |                 |                |                |                |                |                 | -                            | mm                           | Ν      |                | _           |
| 12  | 40                       | 18 | 30             | 23,4           | 13                       | 75              | 29             | 73             | 85             | 42             | 5,3             | M 6                          | 4,5                          | 2 850  | 3 250          | LZAU 12-2LS |
| 16  | 48                       | 22 | 35             | 28,4           | 13                       | 100             | 33             | 88             | 100            | 54             | 5,3             | M 6                          | 5,5                          | 3 450  | 3 450          | LZAU 16-2LS |
| 20  | 57                       | 25 | 42             | 33,5           | 18                       | 100             | 37             | 115            | 130            | 72             | 6,6             | M 8                          | 6,6                          | 5 200  | 5 500          | LZAU 20-2LS |
| 25  | 66                       | 30 | 51             | 40             | 22                       | 120             | 42             | 140            | 160            | 88             | 8,4             | M 10                         | 6,6                          | 7 650  | 8 150          | LZAU 25-2LS |
| 30  | 77                       | 35 | 60             | 46,5           | 26                       | 150             | 51             | 158            | 180            | 96             | 10,5            | M 12                         | 9                            | 12 200 | 12 900         | LZAU 30-2LS |
| 40  | 95                       | 45 | 77             | 61             | 34                       | 200             | 55             | 202            | 230            | 122            | 13,5            | M 16                         | 9                            | 20 800 | 20 800         | LZAU 40-2LS |
| 50  | 115                      | 55 | 93             | 77             | 34                       | 200             | 63             | 250            | 280            | 152            | 13,5            | M 16                         | 11                           | 30 000 | 28 000         | LZAU 50-2LS |

| Dimens<br>Lunghez | <b>ioni</b><br>zza standard |        |             |             |       |       |       |       |       |       |
|-------------------|-----------------------------|--------|-------------|-------------|-------|-------|-------|-------|-------|-------|
| d                 | L                           |        |             |             |       |       |       |       |       |       |
| mm                |                             | increm | enti di lun | ghezza in m | m     |       |       |       |       |       |
| 12-40             | 300                         | 600    | 900         | 1 200       | 1 500 | 1 800 | 2 100 | 2 400 | 2 700 | 3 000 |
| 50                | _                           | 600    | 900         | 1 200       | 1 500 | 1 800 | 2 100 | 2 400 | 2 700 | 3 000 |

<sup>&</sup>lt;sup>1)</sup> L'appellativo per una tavola lineare LZAU quadro con albero di ad es. 600 mm LZAU ... -2LS x 600.

**5KF** 51

Fornito con alberi e supporti per alberi preassemblati.

<sup>2)</sup> Viti appropriate con esagono incassato a norma DIN 912 / ISO 4762.

<sup>&</sup>lt;sup>3)</sup> La separazione è sempre disposta simmetricamente rispetto alla metà della lunghezza della tavola.

<sup>4)</sup> Valido solo per carico uniforme sui quattro manicotti a sfere LBC ... A.

### Alberi di precisione

Gli alberi di precisione SKF sono disponibili nell'esecuzione piena e cava. Gli alberi pieni possono essere forniti in tutte le dimensioni richieste in combinazione ai manicotti a sfere SKF, mentre quelli cavi a partire da un diametro esterno minimo di 16 mm. Tutti gli alberi sono temprati ad induzione e rettificati (vedi tabella alla pagina seguente). Gli alberi SKF offrono un'eccezionale stabilità alla deformazione e sono concepiti per una lunga durata di servizio.

Le estremità degli alberi di produzione normale possono avere valori di durezza e dimensioni diverse. Per applicazioni speciali sono disponibili anche alberi pieni in acciaio inox o cromati a cromo duro con uno strato di circa 10 µm. La superficie di un albe-

ro in acciaio inox è meno dura di quella di un albero realizzato in acciaio di alta qualità. Inoltre, la penetrazione di tempra può essere maggiore rispetto ai dati riportati nella tabella a seguire, ciò che influenza la lavorabilità dell'albero. In virtù dei vantaggi che ne derivano, gli alberi di precisione SKF trovano impiego non solo insieme a manicotti a sfere SKF in gruppi di guida, ma anche in altre applicazioni quali assi o colonne di guida.

#### Materiali

Gli alberi di precisione SKF sono realizzati in acciaio di alta qualità non legato Cf53 (materiale n.1.1213), Ck53 (materiale n.1.1210), C60 (materiale n.1.0601) e 100Cr6 (materiale n.1.3505). La durezza superficiale va

da 60 a 64 HRC. Gli albero pieni in acciaio inox sono realizzati in X90CrMoV18 (materiale n.1.4112) o X46Cr13 (materiale n.1.4034). In questo caso la durezza superficiale va da 52 a 56 HRC. Alberi in altri materiali speciali sono realizzabili su ordinazione.

#### Trattamento superficiale

Tutti gli alberi di precisione SKF presentano una rugosità superficiale massima di  $R_a$  0,3  $\mu$ m.



52 **5KF** 

| Profondita Ø albero | oeri SKF<br>Profondità |           |
|---------------------|------------------------|-----------|
| £ 3                 |                        | di tempra |
| da                  | a                      | min       |
| mm                  |                        | mm        |
| _                   | 10                     | 0,5       |
| 10                  | 18                     | 0,8       |
| 18                  | 30                     | 1,2       |
| 30                  | 50                     | 1,5       |
| 50                  | 80                     | 2,2       |
| 80                  | 100                    | 3,0       |

#### **Tolleranze**

Gli alberi di precisione SKF in acciaio sono lavorati con tolleranze da h6 o h7. La precisione delle dimensioni e della forma di questi alberi è riportata nella tabella a pagina 56. Possono riscontrarsi leggeri scostamenti dai valori indicati in tabella per le sezioni degli alberi sottoposti a ricottura. Su ordinazione sono disponibili alberi di precisione SKF in acciaio con diametro lavorato con tolleranza h9. Gli alberi tagliati a lunghezze speciali hanno una tolleranza secondo ISO 2768 serie media. I valori rispettivi sono elencati nella tabella qui a lato.

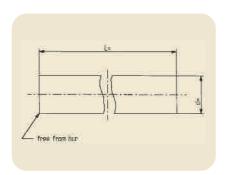
#### Alberi con fori radiali

Per le linee assiali che richiedono un supporto sono necessari alberi con fori radiali filettati. La SKF può fornirli. I fori radiali possono essere praticati in modo da combaciare con i supporti per alberi SKF oppure in base ai disegni del cliente. In ogni caso la SKF raccomanda di attenersi ai valori di riferimento specificati nella tabella a lato relativamente a dimensione e profondità del filetto. Gli alberi SKF con fori radiali non sono ricotti in corrispondenza dei fori; il filetto è praticato nell'albero temprato e rettificato, così che non si verifichino scostamenti della durezza e della precisione dimensionale.

#### Alberi composti

Gli alberi composti possono essere forniti sulla base dei disegni del cliente, con giunti avvitati o con giunti del tipo maschio-femmina, a seconda delle applicazioni. I perni di centraggio e i fori di alloggiamento permettono un accoppiamento perfetto sulla giunzione. Per garantire il montaggio corretto sono presenti dei contrassegni sulle estremità e sulle sezioni dell'albero. Gli alberi composti devono essere fissati su un supporto in corrispondenza della giunzione, in particolare nel caso degli alberi con accoppiamento del tipo maschiofemmina. I fori radiali per il supporto devono essere praticati il più possibile vicino alla giunzione.

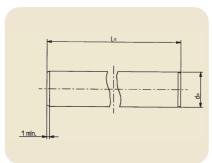
Nota: la lunghezza dell'albero e la posizione del supporto deve essere determinata in modo che un'eventuale inflessione dell'albero non generi una fessura in corrispondenza del giunto.


| Tolleranze<br>ISO 2768 (<br>Lunghezza<br>nominale<br>da | · •   | alberi<br>Tolleranza |
|---------------------------------------------------------|-------|----------------------|
| mm                                                      |       | mm                   |
| _                                                       | 120   | ± 0,3                |
| 120                                                     | 400   | ± 0,5                |
| 400                                                     | 1 000 | ± 0,8                |
| 1 000                                                   | 2 000 | ± 1,2                |
| 2 000                                                   | 4 000 | ± 2                  |
| 4 000                                                   | 8 000 | ± 3                  |

#### Trattamento anticorrosivo, imballaggio

Gli alberi di precisione in acciaio sono sottoposti ad un trattamento con un prodotto antiruggine che deve essere asportato prima dell'installazione. In base alla dimensione e alla quantità, gli alberi sono forniti in imballaggio di cartone o in casse di legno che offrono la massima protezione durante il trasporto.

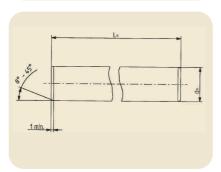
| mm 3 <sup>4)</sup> 4 <sup>4)</sup> 5                                                                                                                                                 | Mm 3 900 | LJMH <sup>3)</sup> | LJMS <sup>3)</sup> | LJMR <sup>3)</sup> | LJT <sup>3)</sup> |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------|--------------------|-------------------|--|--|--|
| 3 <sup>4)</sup><br>4 <sup>4)</sup><br>5                                                                                                                                              |          | 0.000              |                    | 200                |                   |  |  |  |
| 4 <sup>4)</sup><br>5                                                                                                                                                                 | 3 900    | 0.000              |                    | 200                |                   |  |  |  |
| 5                                                                                                                                                                                    | 3 900    | 0.000              |                    |                    |                   |  |  |  |
|                                                                                                                                                                                      | 3 900    | 0.000              |                    | 200                |                   |  |  |  |
| 6                                                                                                                                                                                    |          | 2 000              | 1 000              | 3 800              |                   |  |  |  |
| U                                                                                                                                                                                    | 3 900    | 3 900              | 3 900              | 3 800              |                   |  |  |  |
| 8                                                                                                                                                                                    | 3 900    | 3 900              | 3 900              | 3 800              |                   |  |  |  |
| 10                                                                                                                                                                                   | 6 200    | 6 200              | 3 900              | 3 800              |                   |  |  |  |
| 12                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 14                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              |                   |  |  |  |
| 16                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 20                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 25                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 30                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 40                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 50                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 60                                                                                                                                                                                   | 6 200    | 6 200              | 4 900              | 6 200              | 6 000             |  |  |  |
| 80                                                                                                                                                                                   | 6 200    | 6 200              |                    |                    | 6 000             |  |  |  |
| <ul> <li>Diametri e lunghezza diverse su ordinazione</li> <li>Tolleranza di lunghezza ±10 % (della lunghezza massima dell'albero)</li> <li>Vedi pagina 56/57 per dettagli</li> </ul> |          |                    |                    |                    |                   |  |  |  |


**5**53



#### ESSC 1

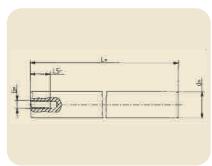
tagliato, non smussato, solo sbavato


 tolleranza di lunghezza secondo ISO 2768 (media) (vedi pagina 53)



#### ESSC 2

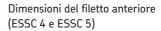
tagliato, smussato

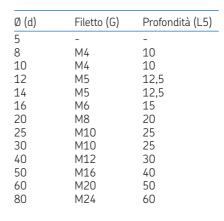

• tolleranza di lunghezza come ESSC 1



#### ESSC 3

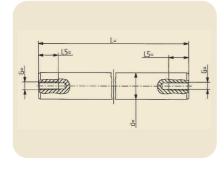
tagliato, smussato a 25° e facce anteriori a 90° per tolleranze di lunghezza limitate o smusso in base alle specifiche del cliente

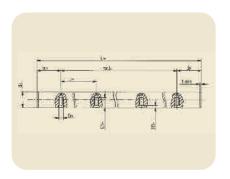

• tolleranza di lunghezza ±0,1 mm fino a 3000 mm di lunghezza totale




#### ESSC 4

tagliato con smusso a 25°, facce anteriori a 90° e un foro assiale


• tolleranza di lunghezza come ESSC 3



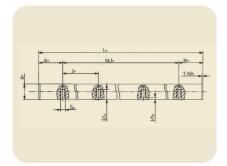





come ESSC 4 con due fori assiali





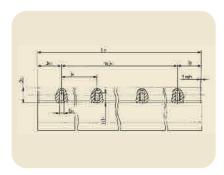

#### ESSC 6

tagliato e smussato come ESSC 2

- con fori radiali per LRCB (vedi pagina 47)
- primo foro radiale con Jx = J/2
- H1 in base alla profondità di tempra

| Dimensioni | del | filetto | radiale |
|------------|-----|---------|---------|
|            |     |         |         |

| Ø  | Filetto | G  | G1  | J   | Jx   |
|----|---------|----|-----|-----|------|
| 5  | -       | -  | -   | -   | -    |
| 8  | -       | -  | -   | -   | -    |
| 12 | M4      | 5  | 8   | 75  | 37,5 |
| 16 | M5      | 6  | 9,5 | 100 | 50   |
| 20 | M6      | 7  | 13  | 100 | 50   |
| 25 | M8      | 9  | 14  | 120 | 60   |
| 30 | M10     | 11 | 18  | 150 | 75   |
| 40 | M10     | 11 | 20  | 200 | 100  |
| 50 | M12     | 13 | 23  | 200 | 100  |
| 60 | M14     | 15 | 28  | 300 | 150  |
| 80 | M16     | 16 | 33  | 300 | 150  |

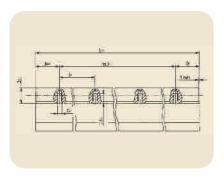



#### ESSC 7

come ESSC 6

• fori radiali con J e Jx come da specifiche del cliente

| Ø  | Filetto | G  | G1  | J | Jx |
|----|---------|----|-----|---|----|
| 5  | -       | -  | -   | - | -  |
| 8  | -       | -  | -   | - | -  |
| 12 | M4      | 5  | 8   | - |    |
| 16 | M5      | 6  | 9,5 | - | -  |
| 20 | M6      | 7  | 13  | - | -  |
| 25 | M8      | 9  | 14  | - | -  |
| 30 | M10     | 11 | 18  | - | -  |
| 40 | M10     | 11 | 20  | - | -  |
| 50 | M12     | 13 | 23  | - | -  |
| 60 | M14     | 15 | 28  | - | -  |
| 80 | M16     | 16 | 33  | _ | _  |




#### ESSC 8

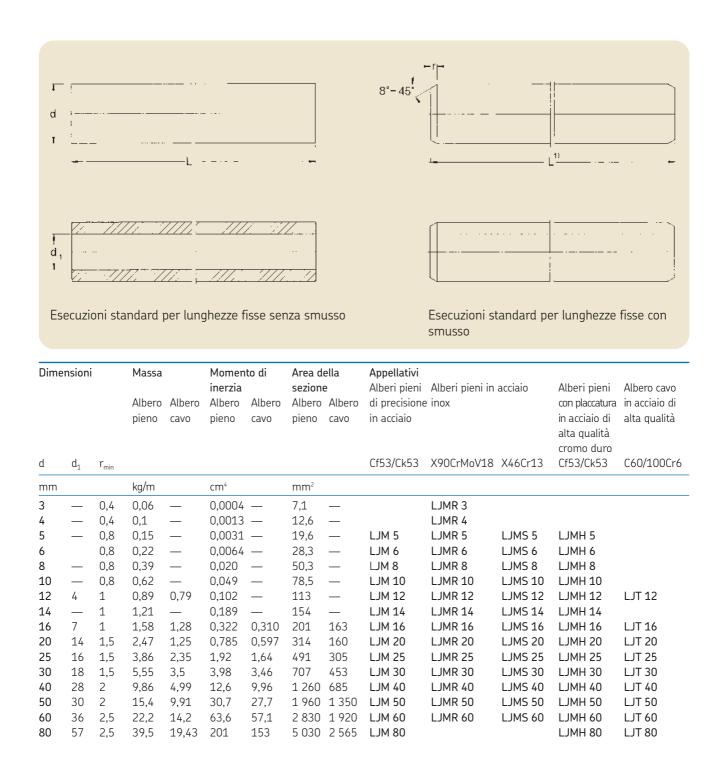
tagliato e smussato come ESSC 2

- l'albero è montato su LRCB (vedi pagina 47)
- primo foro radiale con Jx = J/2
- H1 in base alla profondità di tempra

| Ø  | Filetto | G  | G1  | J   | Jx   |
|----|---------|----|-----|-----|------|
| 5  | -       | -  | -   | -   | -    |
| 8  | -       | -  | -   | -   | -    |
| 12 | M4      | 5  | 8   | 75  | 37,5 |
| 16 | M5      | 6  | 9,5 | 100 | 50   |
| 20 | M6      | 7  | 13  | 100 | 50   |
| 25 | M8      | 9  | 14  | 120 | 60   |
| 30 | M10     | 11 | 18  | 150 | 75   |
| 40 | M10     | 11 | 20  | 200 | 100  |
| 50 | M12     | 13 | 23  | 200 | 100  |
| 60 | M14     | 15 | 28  | 300 | 150  |
| 80 | M16     | 16 | 33  | 300 | 150  |
|    |         |    |     |     |      |



#### ESSC 9


come ESSC 8

- l'albero è montato su LRCC (vedi pagina 47)
- fori radiali con J e Jx come da specifiche del cliente

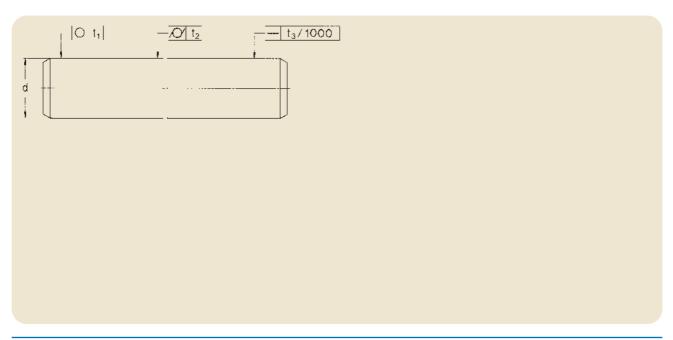
| Ø  | Filetto | G  | G1  | J | Jx |
|----|---------|----|-----|---|----|
| 5  | -       | -  | -   | - | -  |
| 8  | -       | -  | -   | - | -  |
| 12 | M4      | 5  | 8   | - | -  |
| 16 | M5      | 6  | 9,5 | - | -  |
| 20 | M6      | 7  | 13  | - | -  |
| 25 | M8      | 9  | 14  | - | -  |
| 30 | M10     | 11 | 18  | - | -  |
| 40 | M10     | 11 | 20  | - | -  |
| 50 | M12     | 13 | 23  | - | -  |
| 60 | M14     | 15 | 28  | - | -  |
| 80 | M16     | 16 | 33  | - | -  |
|    |         |    |     |   |    |

ESSC 10, albero come da disegno/specifiche del cliente

**5KF** 55



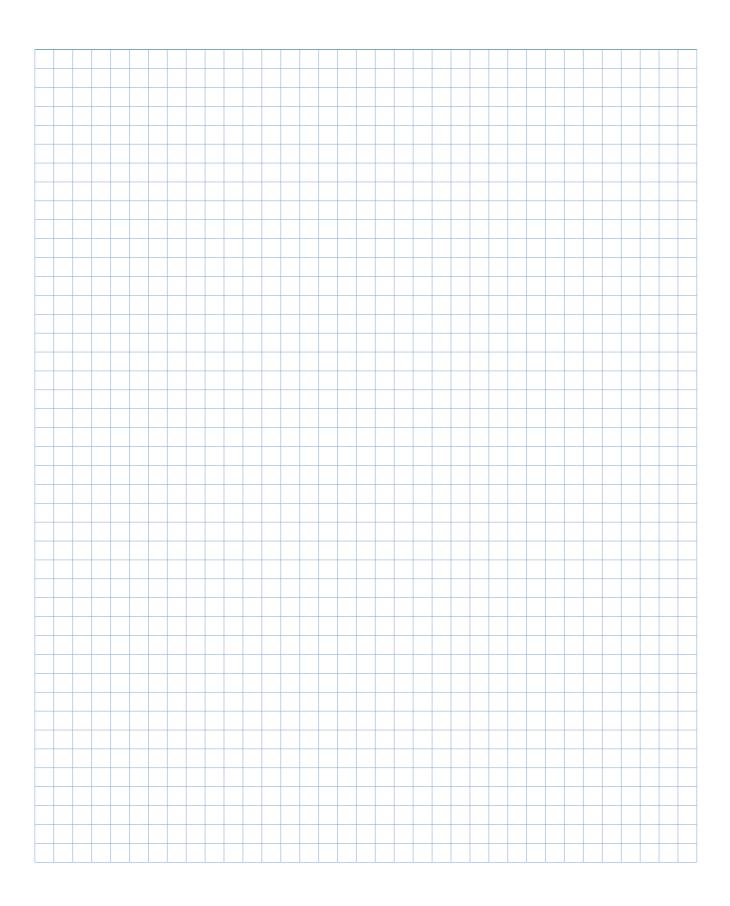
#### Attenzione:


il valore  $d_1$  può deviare rispetto a quello indicato. Se necessario chiedere informazioni al riguardo.

Tipi e diametri dell'albero diversi a richiesta.

La portata statica deve essere diminuita dell'8% e la portata dinamica del 18% in caso di impiego del tipo anticorrosione (HV6) in combinazione a alberi di precisione in acciaio inox.

<sup>&</sup>lt;sup>1)</sup> Alberi tagliati a lunghezze speciali con estremità smussate. La tolleranza di lunghezza di questi alberi corrisponde a LJM 20x1500 ESSC2 (media). L'appellativo per un albero con Ø 20 mm tagliato a 1,5 m è ad es. LJM 20x1500 ESSC2.


# Alberi di precisione in acciaio di alta qualità



| Albero<br>Ø nominale |                     | ne di dime<br>olleranza h | nsione e forn<br>6 | na                         |       | Alberi tolleranza h7 |       |           |                |                            |
|----------------------|---------------------|---------------------------|--------------------|----------------------------|-------|----------------------|-------|-----------|----------------|----------------------------|
|                      | Tolleranza<br>sul Ø |                           | Rotondità          | Cilindricità Rettilineità¹ |       | Tolleranza<br>sul Ø  |       | Rotondità | Cilindricità   | Rettilineità <sup>1)</sup> |
| d                    | alta                | bassa                     | $t_1$              | t <sub>2</sub>             | $t_3$ | alta                 | bassa | $t_1$     | t <sub>2</sub> | $t_3$                      |
| mm                   | μm                  |                           |                    |                            |       |                      |       |           |                |                            |
| 3                    | 0                   | -6                        | 3                  | 4                          | 150   | 0                    | -10   | 4         | 6              | 150                        |
| 4                    | 0                   | -8                        | 4                  | 5                          | 150   | 0                    | -12   | 5         | 8              | 150                        |
| 5                    | 0                   | -8                        | 4                  | 5                          | 150   | 0                    | -12   | 5         | 8              | 150                        |
| 6                    | 0                   | -8                        | 4                  | 5                          | 150   | 0                    | -12   | 5         | 8              | 150                        |
| 8                    | 0                   | -9                        | 4                  | 6                          | 120   | 0                    | -15   | 6         | 9              | 120                        |
| 10                   | 0                   | -9                        | 5                  | 7                          | 120   | 0                    | -15   | 7         | 10             | 120                        |
| 12                   | 0                   | -11                       | 5                  | 8                          | 100   | 0                    | -18   | 8         | 11             | 100                        |
| 14                   | 0                   | -11                       | 5                  | 8                          | 100   | 0                    | -18   | 8         | 11             | 100                        |
| 16                   | 0                   | -11                       | 5                  | 8                          | 100   | 0                    | -18   | 8         | 11             | 100                        |
| 20                   | 0                   | -13                       | 6                  | 9                          | 100   | 0                    | -21   | 9         | 13             | 100                        |
| 25                   | 0                   | -13                       | 6                  | 9                          | 100   | 0                    | -21   | 9         | 13             | 100                        |
| 30                   | 0                   | -13                       | 6                  | 9                          | 100   | 0                    | -21   | 9         | 13             | 100                        |
| 40                   | 0                   | -16                       | 7                  | 11                         | 100   | 0                    | -25   | 11        | 16             | 100                        |
| 50                   | 0                   | -16                       | 7                  | 11                         | 100   | 0                    | -25   | 11        | 16             | 100                        |
| 60                   | 0                   | -19                       | 8                  | 13                         | 100   | 0                    | -30   | 13        | 19             | 100                        |
| 80                   | 0                   | -19                       | 8                  | 13                         | 100   | 0                    | -30   | 13        | 19             | 100                        |

**5KF** 57

<sup>&</sup>lt;sup>1)</sup> Alberi con precisioni superiori su richiesta.





 $\ensuremath{\mathbb{R}}$  SKF è un marchio registrato del Gruppo SKF.

© Gruppo SKF 2011
La riproduzione, anche parziale, del contenuto di questa pubblicazione è consentita soltanto previa autorizzazione scritta della SKF. Nella stesura è stata dedicata la massima attenzione al fine di assicurare l'accuratezza dei dati, tuttavia non si possono accettare responsabilità per eventuali errori od omissioni, nonché per danni o perdite diretti o indiretti derivanti dall'uso delle informazioni qui contenute.

PUB 4182/2 IT · Aprile 2011

Questa pubblicazione sostituisce la nº 4182/1 IT

Stampata in Svezia su carta ecologica.