

OPTIBELT TECHNICAL MANUAL optibelt DELTA CHAIN Carbon

The **optibelt DELTA CHAIN Carbon** sets new standards in the market for high performance timing belts. Endless **optibelt DELTA CHAIN Carbon** high performance timing belts together with the associated ZRS DC timing belt pulleys enable slip-free synchronous power transmission of up to several hundred kilowatts. Up to 100% higher power transmission is possible compared to high performance rubber timing belts such as **optibelt OMEGA HP**. The particular focus here is on drives with very high torques. In general, the overall width can be considerably reduced for power drives with small and medium centre distances.

The innovative combination of materials comprising an extremely resistant polyurethane compound, an abrasion-resistant and specially treated polyamide fabric, as well as a carbon fibre cord, provides the **optibelt DELTA CHAIN Carbon** with unmatched strength and resistance to a wide range of chemicals, oils and fluids.

This means that the **optibelt DELTA CHAIN Carbon** is suitable for a wide variety of applications, including uses which were previously reserved for roller chains, for example.

All relevant information as well as the methods to calculate drives with **optibelt DELTA CHAIN Carbon** high performance timing belts are included in this manual. They are supplemented by the Optibelt product ranges and price lists for belts and pulleys, technical data sheets, the optibelt CAP software for drive design, CAD drawings of optibelt ZRS DC toothed pulleys and additional Optibelt documentation, which can be found in their current version on the Optibelt website.

If you have any further questions, please take advantage of the free service provided by our application engineers.

Optibelt's partners can be found in most countries throughout the world

belt Nederland B.V.

Optibelt GmbH (Filiaal Belgie)

Optibelt Hungary Kft.

belt (Canada) Inc.

Optibelt do Brasil Ltdo

Optib Power Transmission (Shanghai) Co., Ltd.

tibelt Asia Pacific

Optibelt Asia Pacific (Singapore) Pte. Ltd.

2 ARNTZ OPTIBELT GROUP, GERMANY

TABLE OF CONTENTS

	Introduction1
	Sales Organisation of the Arntz Optibelt Group2 - 3
1 PRODUCT DESCRIPTION	1.1 Structure
	1.2 Features
	1.3 Dimensions and Tolerances
2 TIMING BELT	2.1 The optibelt DELTA CHAIN Carbon 8MDC 10
PRODUCT RANGE	2.2 The optibelt DELTA CHAIN Carbon 14MDC11
3 DRIVE DESIGN	3.1 Formula Symbols
	3.2 Pre-Selection of the Profiles
	3.3 Drive Service Factors
	3.4 Additional Factors and Minimum Allowances 15
	3.5 Formulae and Calculation Example16 - 17
	3.6 Belt Tension Adjustment by Frequency Measurement

TABLE OF CONTENTS

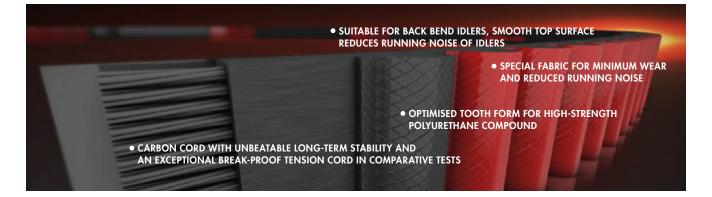
4 POWER RATINGS

5 DESIGN HINTS

4.1 The optibelt DELTA CHAIN Carbon 8MDC	. 19
4.2 The optibelt DELTA CHAIN Carbon 14MDC	. 20

5.1 Timing Belt Pulleys / Tension Idlers	21
5.2 Installation and Maintenance	22
5.3 Problems – Causes – Remedies	23

6 TOOTHED PULLEYS


6.1 Minimum Pulley Diameter and Designs 24	4
6.2 Dimensions and Tolerances	Ś
6.3 Taper Bush Range 27	7
6.4 Toothed Pulley Range	}
7.1 Overview of Standards	1

7 GENERAL INFORMATION

1 PRODUCT DESCRIPTION 1.1 STRUCTURE

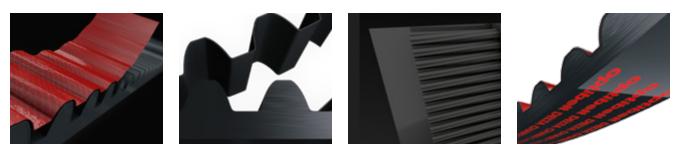
TEETH

The teeth and also the top layer are made of high-strength cast polyurethane or thermoset and an extremely wear-resistant fabric. Both features give the teeth outstanding shear strength.

TOOTH-SIDE FABRIC

The shear strength of the teeth is enhanced by a strong, coated and well-bonded fabric. Friction between the belt and the pulley is also reduced. This reduces the degree to which the friction partners heat up and minimises the running noise.

TOOTH PROFILE


The curved tooth profile of the **optibelt DELTA CHAIN Carbon** timing belt ensures that it perfectly meshes and engages with the precisely fitting grooves on the matching **optibelt ZRS DC** pulleys. This tooth profile is not compatible with Omega or HTD, RPP and STD profiles. Consequently, the use of **optibelt DELTA CHAIN Carbon** timing belts is only recommended for **optibelt ZRS DC** pulleys or CTD or PC pulleys with the same profile. These and all other significant curved profiles, particularly including those of the pulleys referred to above, are standardised in ISO 13050.

TENSION CORD

In contrast to rubber and polyurethane timing belts e.g. the **optibelt ALPHA** product groups, a tension cord made of carbon fibres is used. This stands out particularly with its ability to transmit extremely high forces. Carbon cord achieves unmatched length stability and outstanding breakage resistance in comparison to all other tension cords such as those made of glass, steel or aramid. **optibelt DELTA CHAIN Carbon** timing belts must not be bent otherwise the carbon tension cord will be damaged.

TOP SURFACE

The smooth top surface of the belt consists of an abrasion-resistant, thin, and thus bendable polyurethane compound. Due to the smooth top surface as opposed to a grooved structure, a back bend idler can be used without any significant increase in the noise level.

1 PRODUCT DESCRIPTION 1.2 FEATURES

POWER TRANSMISSION

Up to 100% higher power transmission is possible compared to high performance rubber timing belts such as the **optibelt OMEGA HP**. The particular focus here is on drives with very high torques. In general, the overall width can be considerably reduced for power drives with small and medium centre distances.

RESISTANCE TO CHEMICALS

Due to the materials used, especially the elastomer polyurethane used in this case, the **optibelt DELTA CHAIN Carbon** exhibits good to very good resistance to oils, greases and a large number of aggressive chemicals when compared to rubber. Verification of the selected drive in tests is generally recommended. Simple swelling tests should be performed in advance.

TEMPERATURE RESISTANCE

The timing belt withstands temperatures of approx. -30°C to +80°C. Temperatures exceeding this level may result in premature failure of the belt.

EFFICIENCY

Timing belt drives operate synchronously with positive engagement power transmission, i.e. without speed loss, in contrast to drives with frictional power transmission. Despite the high-strength polyurethane, the belt is still flexible in the bending direction, and the specially developed tooth fabric provides almost frictionless engagement with the teeth, resulting in up to 98% efficiency.

NOISE EMISSIONS

The optimised tooth shape and the coated, tooth-facing fabric minimise friction and the noise that occurs when the tooth engages with the pulley. Moreover, by reducing the belt width by up to 50% compared to high performance rubber timing belts, the noise component caused by air displacement is also considerably reduced. This means overall that the relatively hard **optibelt DELTA CHAIN Carbon** is able to match, or even improve on, the noise level of rubber timing belts, especially compared to much wider standard rubber or polyurethane timing belts.

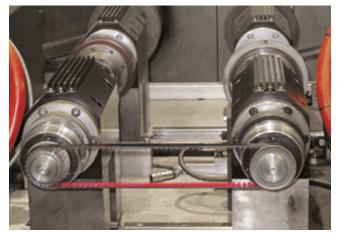
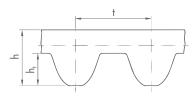


Figure 1.2.1: Test bench


Figure 1.2.2: Reduced width

1 PRODUCT DESCRIPTION 1.3 DIMENSIONS AND TOLERANCES

Table 1.3.1: Nominal dimensions and weights per metre

Profile	Tooth pitch	Overall height	Tooth height	Metre weight per mm width	
	t [mm]	h [mm]	h _t [mm]	[kg/(m*mm)]	
8MDC	8.0	5.9	3.4	0.0048	
14MDC	14.0	10.2	6.0	0.0079	

LENGTH TOLERANCES

The length tolerances indicated in Table 1.3.2 refer to the centre distance. The measuring arrangement is shown in Figure 1.3.2.

Table 1.3.2: Length Tolerances

	Timing bo L _w [I	Length tolerance a _{LTol} [mm]		
		<	760	± 0.30
>	786	<	1016	± 0.33
>	1022	<	1272	± 0.36
>	1274	<	1520	± 0.41
>	1526	<	1778	± 0.43
>	1784	<	2032	± 0.46
>	2040	<	2282	± 0.49
>	2288	<	2536	± 0.52
>	2544	<	2792	± 0.54
>	2800	<	3048	± 0.56
>	3052	<	3304	± 0.58
>	3312	<	3566*	± 0.60

*For longer lengths, 0.03 mm have to be added for each increment of 250 mm.

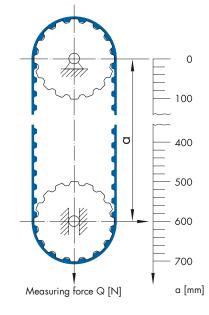


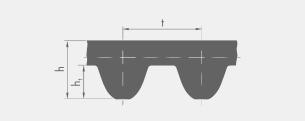
Figure 1.3.2: Arrangement to measure the belt length

Profile 12 20 21 36 37 62 68 90 125 Measuring force [N] 8MDC 267 467 756 1223 68 90 125 14MDC 1179 Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6"Colspa="6"Colspan="6"Colspa="6"Colspan="6"Colspa="6"Cols

1 PRODUCT DESCRIPTION 1.3 DIMENSIONS AND TOLERANCES

Table 1.3.4: Width tolerance

Profile	Width	Permissible tolerance of belt width [mm]				
	[mm]	Pitch length L _w ≤ 840 mm	Pitch length L _w > 840 mm ≤ 1680 mm	Pitch length L _w > 1680 mm		
8MDC	< 12	± 0.4	+0.4/-0.8	±0.8		
	$\geq 12 < 21$	± 0.8	+0.8/-1.2	+0.8/-1.2		
	$\geq 21 < 36$	± 0.8	+0.8/-1.2	+0.8/-1.2		
	$\geq 36 < 62$	± 0.8	+0.8/-1.2	+0.8/-1.2		
	≥ 62	± 1.2	+1.2/-1.6	±1.6		
$14MDC = \begin{array}{c} < 20 \\ \geq 20 < 37 \\ \geq 37 < 68 \\ \geq 68 < 90 \\ \geq 90 < 125 \\ \geq 125 \end{array}$		± 0.8	±0.8	+0.8/-1.2		
		± 0.8	+0.8/-1.2	+0.8/-1.2		
		± 0.8	+0.8/-1.2	+0.8/-1.2		
		$\pm 1.2/-1.6$	±1.6	+1.6/-2.0		
		± 1.6	+1.6/-2.0	±2.0		
		± 2.4	+2.4/-2.8	+2.4/-3.2		


STANDARDIZATION

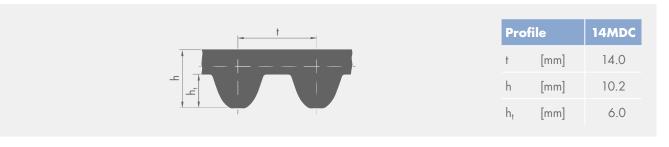
optibelt DELTA CHAIN Carbon timing belts and **optibelt ZRS DC** pulleys are standardized in ISO 13050.

2 TIMING BELT PRODUCT RANGE 2.1 optibelt DELTA CHAIN Carbon 8MDC

Pro	file	8MDC
t	[mm]	8.0
h	[mm]	5.9
h _t	[mm]	3.4

optibelt DELTA CHAIN Carbon 8MDC								
Profile, length	Pitch length L _w [mm]	Number of teeth	Profile, length	Pitch length L _w [mm]	Number of teeth			
8MDC 640 8MDC 720 8MDC 800 8MDC 896 8MDC 960	640,00 720,00 800,00 896,00 960,00	80 90 100 112 120	8MDC 3280 8MDC 3600 8MDC 4000 8MDC 4400 8MDC 4480	3280,00 3600,00 4000,00 4400,00 4480,00	410 450 500 550 560			
8MDC 1000 8MDC 1040 8MDC 1120 8MDC 1200 8MDC 1224	1000,00 1040,00 1120,00 1200,00 1224,00	125 130 140 150 153						
8MDC 1280 8MDC 1440 8MDC 1600 8MDC 1760 8MDC 1792	1280,00 1440,00 1600,00 1760,00 1792,00	160 180 200 220 224						
8MDC 2000 8MDC 2200 8MDC 2240 8MDC 2400 8MDC 2520	2000,00 2200,00 2240,00 2400,00 2520,00	250 275 280 300 315	Please also	o refer to the current	product range			
8MDC 2600 8MDC 2800 8MDC 2840 8MDC 3048 8MDC 3200	2600,00 2800,00 2840,00 3048,00 3200,00	325 350 355 381 400		iensions.				
	Standard widths: 12 mm, 21 mm, 36 mm, 62 mm							

Intermediate widths on request


Example order:

optibelt DELTA CHAIN Carbon 1120 8MDC 21

1120 = pitch length L_w [mm] 8MDC = profile 21 = width [mm]

2 TIMING BELT PRODUCT RANGE 2.2 optibelt DELTA CHAIN Carbon 14MDC

optibelt DELTA CHAIN Carbon 14MDC							
Profile, length	Pitch length L _w [mm]	Number of teeth	Profile, length	Pitch length L _w [mm]	Number of teeth		
	-						
	ŀ	Please also refer to th or inquire about	e current product rar other dimensions.	ige			
	Standar	d widths: 20 mm, 37 Intermediate w	mm, 68 mm, 90 mm vidths on request	n, 125 mm			
Example order:			1400 =	pitch length L _w [mm]			
	AIN Carbon 1400 1	1MDC 37	14MDC =				

optibelt DELTA CHAIN Carbon 1400 14MDC 37

37 = width [mm]

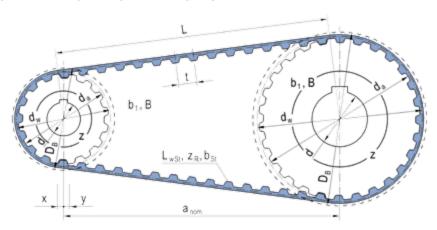
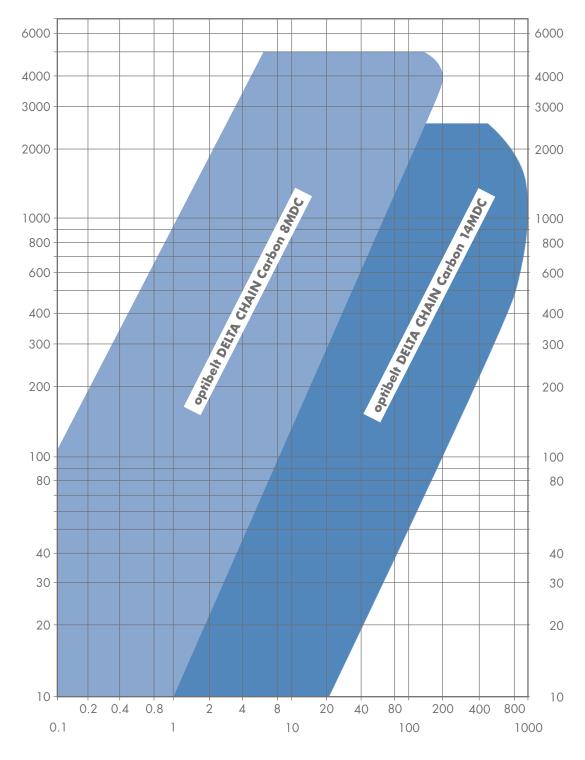

3 DRIVE DESIGN 3.1 FORMULA SYMBOLS

Table 3.1.1: Formula symbols

Formula symbols	Explanation	Unit	Formula symbols	Explanation	Unit
a	Drive centre distance	[mm]	n ₂	Speed of the driven timing belt pulley	[min ⁻¹]
a _{nom}	Drive centre distance, calculated		Р	Power to be transmitted	
c ₀	with a standard belt length Base drive service factor	[mm]	P _B	from timing belt drive Design power	[kW] [kW]
с ₀ с ₁	Tooth meshing factor		Р _N	Rated power	[kW]
C ₂	Total drive service factor		Pü	Power transmitted from a standard	[[[[]]]]]
C3	Speed ratio correction factor		· U	belt width $[P_N \cdot c_1 \cdot c_7]$	[kW]
с ₆	Fatigue allowance		Fα	Minimum static shaft loading	[N]
C ₇	Length factor		F _{n perm}	Maximum permitted circumferential force	[N]
da	Outside diameter of timing belt pulley	[mm]	F _{n3}	Circumferential force to be effectively	
d _w	Pitch diameter of timing belt pulley	[mm]	Fn	transmitted Circumferential force to be effectively	[N] [N]
d _{wg}	Pitch diameter of large timing belt pulley	[mm]	'n	transmitted incl. actual centrifugal force	
d _{wk}	Pitch diameter of small timing belt pulley	[mm]	t	Tooth pitch	[mm]
d _{w1}	Pitch diameter of driving pulley	[mm]	v	Belt speed (velocity)	[m/s]
d _{w2}	Pitch diameter of driven pulley	[mm]	x	Minimum allowance of the drive centre	
Eα	Belt deflection for a given span length	[mm]		distance a _{nom} for installation of the	[]
F	Test force	[N]	z _e	timing belt Number of meshed teeth of the	[mm]
f	Frequency	[Hz]	-e	small driving pulley	
i	Speed ratio		zg	Number of teeth of the large driving pulley	
L	Span length	[mm]	z _k	Number of teeth of the small driving pulley	
L _{wSt}	Standard pitch length of the timing belt	[mm]	z _R	Number of teeth of the timing belt	
L _{wth}	Calculated pitch length of the timing belt	[mm]	zı	Number of teeth of the driving pulley	
nı	Speed of the driving pulley	[min ⁻¹]	z ₂	Number of teeth of the driven pulley	

Figure 3.1.1: Example of a drive geometry: Belts and pulleys


3 DRIVE DESIGN 3.2 PRE-SELECTION OF THE PROFILES

Graph 3.2.1: Pre-selection of profiles 8MDC and 14MDC

Speed of small timing belt pulley n_k [min⁻¹]

See also optibelt CAP drive calculation, software at www.optibelt.com

Design power $P_B = P \cdot c_2 \text{ [kW]}$

3 DRIVE DESIGN 3.3 DRIVE SERVICE FACTORS

TOTAL DRIVE SERVICE FACTOR c2

The total drive service factor c_2 is composed of the base drive service factor c_0 and two further allowances c_3 and c_6 .

The total drive service factor c_2 should also consider a high starting load M_A and a high braking load M_{Br} at the drive or a high braking load at the driven side in proportion to the rated load M_N of the driving machine.

With frequent switching operations and high starting or braking loads, which thus become the main load, while the power transmission itself recedes into the background, an additional safety allowance must be added to the maximum determined quotient.

Table 3.3.1: Base drive service factor c₀

	Load type and examples of driving machines						
C ₀	Uniform run Electric motor Fast-moving turk Piston machine number of cylin	with high	Irregular operation Hydraulic motor Slow-moving turbine Piston machine with low number of cylinders				
Type of base load and examples of a driven machine	Base drive service factor c ₀ for daily operating time up to 16 h above 16 h up to 16 h above 16 h						
Light drives, joint-free and uniform running Measuring instruments Film cameras Office equipment Belt conveyors (light goods)	1.3	1.4	1.4	1.5			
Medium drives, temporary operation with small to medium impact loading Mixing machines Food processors Printing machines Textile machines Packaging machines Belt conveyors (heavy goods)	1.6	1.7	1.8	1.9			
Heavy drives, operation with medium to strong temporary impact load Machine tools Wood processing machines Eccentric drives Conveying systems (heavy goods)	1.8	1.9	2.0	2.1			
Very heavy drives, operation with strong permanent impact load Mills Calenders Extruders Piston pumps and compressors Lifting gear	2.0	2.1	2.2	2.3			

3 DRIVE DESIGN 3.4 ADDITIONAL FACTORS AND MINIMUM ALLOWANCES

BASE DRIVE SERVICE FACTOR c0

The base drive service factor c_0 takes into account the daily operating time and the type of driver and driven units. As it is not possible to summarise any thinkable combination of driver, driven unit and operating conditions in one table, the base drive service factors are to be considered as guide values. The assignment of the driven unit depends on the type of load that is present in each case.

For slowly operating drives with a speed of ≤ 100 min⁻¹, a base drive service factor of at least 2 is recommended.

SPEED RATIO CORRECTION FACTOR c3

For the speed step-up ratios, the value that corresponds to the speed ratio is added to the base drive service factor c_0 .

Table 3.4.1: Speed ratio correction factor

Speed ratio i	Speed ratio correction factor c ₃
≥ 0.80	0.0
< 0.80 ≥ 0.57	0.1
< 0.57 ≥ 0.40	0.2
< 0.40 ≥ 0.28	0.3
< 0.28	0.4

Table 3.4.4: Tooth meshing factor c₁

Number of meshed teeth	Tooth meshing factor c ₁
≥ 6	1.0
5	0.8
4	0.6
3	0.4
2	0.2

Minimum allowance x for tensioning timing belts

 $x = 0.004 \cdot a_{nom}$

Table 3.4.2: Fatigue allowance c₆

Drive conditions	Fatigue allowance c _ó
Use of tension or idler pulleys	0.2
Operating time 16–24 h	0.2
Only rare or occasional operation	- 0.2

Table 3.4.5: Minimum allowance y for installation of timing belt pulleys without flange

Drive centre distances [mm]	Minimum allowance y [mm]
≤ 1000	1.8
> 1000 ≤ 1780	2.8
> 1780 ≤ 2540	3.3
> 2540 ≤ 3300	4.1
> 3300 ≤ 4600	5.3

Table 3.4.3: Length factor c7

Profile 8MD	C	Profile 14MDC				
Pitch length [mm]	с ₇	Pitch length [mm]	с ₇			
<pre>≤ 600 > 600 ≤ 880 > 880 ≤ 1200 > 1200 ≤ 1760 > 1760 ≤ 2240 > 2240 ≤ 2840 > 2840 ≤ 3600 > 3600</pre>	0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5	≤ 1190 > 1190 ≤ 1610 > 1610 ≤ 1890 > 1890 ≤ 2450 > 2450 ≤ 3150 > 3150 ≤ 3500 > 3500	0.80 0.90 0.95 1.00 1.05 1.10 1.20			

Table 3.4.6: Minimum allowance y for installation of timing belt pulleys with flanges

Profile	Flange on one timing belt pulley [mm]	Flange on both timing belt pulleys [mm]
8MDC	22	33
14MDC	36	58

3 DRIVE DESIGN 3.5 FORMULAE AND CALCULATION EXAMPLE

PRIME MOVER Electric motor 50 Hz star-delta connection P = 11 kW n ₁ = 1450 min ⁻¹	DRIVE CONDITION Operational hours pe Number of starts: Twice Environmental influence no influence of oil, wa Drive centre distance: Maximum pulley diam	DRIVEN MACHINE Paper machine n ₂ = 920 min ⁻¹ ± 2% Type of load: Constant							
FORMULAS		CALCULATION EXAMPLE							
TOTAL DRIVE SERVICE FACTOR									
$c_2 = c_0 + c_3 + c_6$		c ₂ = 1.6 + 0 + 0 = 1.6							
c ₀ from Table 3.3.1		$c_0 = 1.6$							
c ₃ from Table 3.4.1		c ₃ = 0							
c ₆ from Table 3.4.2		c ₆ = 0							
DESIGN POWER									
$P_B = P \cdot c_2$		$P_B = 11 \cdot 1.6 = 17.6 \text{ kW}$							
TIMING BELT PROFILE		optibelt DELTA CHAIN Carbon							
from Graph 3.2.1		Profile 8MDC							
RECALCULATION OF SPEED									
$i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_{w2}}{d_{w1}}$		i = $\frac{1450}{920}$ = 1.576							
NUMBER OF TEETH ON THE TIMIN	IG BELT PULLEYS								
z ₁ , d _{w1} Standard timing belt pu	lleys, see 6.4	z ₁ = 36	d _{w1} = 91.67 mm						
$z_2 = z_1 \cdot i$		$z_2 = 36 \cdot 1.56 = 56.16$							
		z ₂ = 56	d _{w2} = 142.60 mm						
Please observe minimum diameter	·!	Requirement z ≥ 22 minimum number of teeth for							
Minimum number of teeth, see Tal	ole 6.1.1	profile 8MDC met							
RECALCULATION OF SPEED									
$i = \frac{Z_2}{Z_1}$		$i = \frac{56}{36} = 1.556$							
		00	Required:						
$n_2 = \frac{n_1}{i}$		$n_2 = \frac{1450}{1.556} = 932 \text{ min}^{-1}$ 920 min ⁻¹ ± 2% met							
RECOMMENDED DRIVE CENTRE D	ISTANCE								
Recommendation									
$a > 0.5$ $(d_{w1} + d_{w2}) + 15 \text{ mm}$		a > 0.5 (91.67 + 142.60) + 15 mm = 132.14 mm							
$a < 2.0$ $(d_{w1} + d_{w2})$		a < 2.0 (91.67 + 142.60)	= 468.54 mm						
		a = 425 mm selected provis	sionally						

See also optibelt CAP drive calculation, software at www.optibelt.com

3 DRIVE DESIGN 3.5 FORMULAE AND CALCULATION EXAMPLE

FORMULAS

PITCH LENGTH

$$L_{wth} \approx 2a + \frac{\pi}{2} \left(d_{wg} + d_{wk} \right) + \frac{(d_{wg} - d_{wk})^2}{4 a}$$

 L_{wSt} see timing belt range in Chapter 2

CALCULATION EXAMPLE

$$L_{wth} \approx 2 \cdot 425 + \frac{\pi}{2} (142.60 + 91.67) + \frac{(142.60 - 91.67)^2}{8}$$

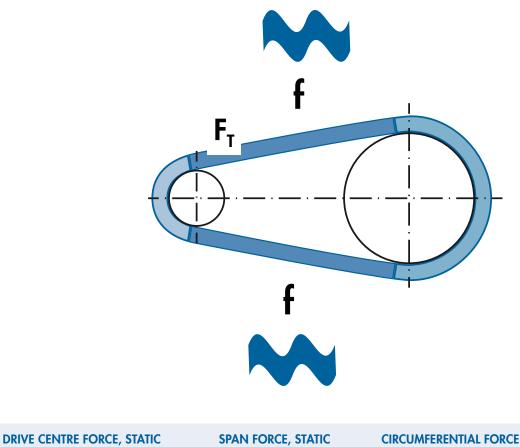
$$L_{wth} \approx 1219.33 \text{ mm} \text{ (selected from Subchapter 2.1)}$$

$$L_{wSt} = 1200 \text{ mm}$$

NOMINAL DRIVE CENTRE DISTANCE							
$a_{nom} = K + \sqrt{K^2 - \frac{(d_{wg} - d_{wk})^2}{8}}$	$a_{nom} = 208 + \sqrt{208^2 - \frac{(142.60 - 91.67)^2}{2}}$						
8	a _{nom} = 415.22 mm						
$K = \frac{L_{wSt}}{4} - \frac{\pi}{8} \left(d_{wg} + d_{wk} \right)$	$K = \frac{1200}{4} - \frac{\pi}{8} (142.60 + 91.67) = 208 \text{ mm}$						
MINIMUM ALLOWANCE FOR TENSIONING							
$x = 0.004 \cdot a_{nom}$	x ≥ 1.66 mm						
MINIMUM ALLOWANCE FOR INSTALLATION							
y = from Table 3.4.6	y = 33 mm Flange on both timing belt pulleys						
NUMBER OF MESHED TEETH ON							
THE SMALL PULLEY	$z_{e} = \frac{36}{6} \left(3 - \frac{142.60 - 91.67}{415} \right) = 17.26$						
$z_{e} = \frac{z_{k}}{6} \left(3 - \frac{d_{wg} - d_{wk}}{a_{nom}} \right) \text{ Round down value}$	z _e = 17						
BELT LENGTH CORRECTION FACTOR							
c ₇ from Table 3.4.3	c ₇ = 1.0						
TOOTH MESHING FACTOR							
c ₁ from Table 3.4.4	c ₁ = 1.0						
BELT WIDTH OVER RATED POWER							
Required: $P_{\ddot{U}} \ge P_B$	21.60 kW > 17.6 kW Requirement met						
$P_{\ddot{U}}$ = transferable rated power of a standard belt width							
$P_{ij} = P_N \cdot c_1 \cdot c_7$ $P_i (arcfile, b) = P_i \text{width fractor (arcfile, b)}$	$P_{ij} = 21.60 \cdot 1.0 \cdot 1.0 = 21.60 \text{ kW}$						
P_N (profile, b) = $P_N \cdot$ width factor (see Chapter 4)	P_N (8MDC, b = 21 mm) = 12.34 · 1.75 = 21.60 kW						
Posult							

Result:	
1 pc. optibelt DELTA CHAIN Carbon timing belt	1200 8MDC 21
1 pc. optibelt ZRS DC timing belt pulley	36 8MDC 21
1 pc. optibelt ZRS DC timing belt pulley	56 8MDC 21

3 DRIVE DESIGN 3.6 BELT TENSION ADJUSTMENT BY FREQUENCY MEASUREMENT


TENSION FOR optibelt DELTA CHAIN Carbon TIMING BELT

The correct level of belt tension is of crucial importance for trouble-free transmission of power, and for achieving an acceptable belt service life. Often, tension which is either too high or too low results in early timing belt failure. A belt which is over-tensioned sometimes causes bearing failure in the driver or driven unit.

Adjustment of the specified static span force, e.g. using the thumbprint method, is not a suitable means of tensioning drives correctly in order to fully exploit them economically. Instead of this, adjustment of the static span force through frequency measurement, e.g. using instruments from the **optibelt TT** series, is recommended. The default value for the frequency measurement can be determined using the following formulas.

FORMULA SYMBOLS

ß	[°]	Arc of contact	Fa	[N]	Static drive centre force
f	[Hz]	Frequency	Fu	[N]	Circumferential force
m _k	[kg/m]	Weight per metre	t	[mm]	Pitch
L	[mm]	Span length	FT	[N]	Static span force
n _k	[1/min]	Speed of small pulley	v	[m/s]	Circumferential speed
P_N	[kW]	Rated power	z _k		Number of teeth of small pulley

 $F_{T} = \frac{F_{\alpha}}{2 \cdot \sin \frac{n}{2}}$

 $f = \sqrt{\frac{F_T + 10^6}{4 + m_k + L^2}}$

 $F_{U} = \frac{P_{N} \cdot 1000}{V}$

 $F_{\alpha} = 1.4 \cdot \frac{60 \cdot 10^{6} \cdot P_{N} \cdot \sin \frac{\pi}{2}}{t \cdot z_{k} \cdot n_{k}}$

4 POWER RATINGS 4.1 optibelt DELTA CHAIN Carbon profile 8MDC

Table 4.1.1: Rated power for profile 8MDC width 12 mm

Rated power P _N [kW]																	
Speed		Number of teeth on the small pulley z_k															
of small timing belt	22	25	28	30	32	34	36	38	40	45	48	50	56	60	64	75	80
pulley					Pitch	diam	eter of	the sm	nall tim	ing be	elt pulle	ey d _{wk}	[mm]				
n _k [min ⁻¹]	56.02	63.66	71.30	76.39	81.49	86.58	91.67	96.77	101.86	114.59	122.23	127.32	142.60	152.79	162.97	190.99	203.72
10 20 40 60 100	0.07 0.13 0.25 0.37 0.59	0.08 0.15 0.29 0.43 0.70	0.10 0.18 0.34 0.50 0.81	0.11 0.20 0.38 0.55 0.88	0.12 0.22 0.41 0.60 0.96	0.13 0.24 0.44 0.65 1.03	0.14 0.26 0.48 0.70 1.11	0.15 0.28 0.51 0.74 1.19	0.16 0.30 0.55 0.79 1.27	0.19 0.34 0.63 0.91 1.46	0.21 0.38 0.70 1.01 1.60	0.22 0.40 0.74 1.07 1.69	0.25 0.46 0.84 1.20 1.94	0.27 0.50 0.92 1.32 2.12	0.29 0.54 1.00 1.44 2.30	0.34 0.64 1.22 1.76 2.81	0.37 0.69 1.31 1.89 3.01
200 300 400 500 600	1.08 1.52 1.95 2.36 2.77	1.31 1.87 2.39 2.91 3.42	1.55 2.20 2.84 3.45 4.07	1.70 2.44 3.14 3.83 4.50	1.86 2.66 3.43 4.18 4.92	2.02 2.88 3.72 4.53 5.35	2.17 3.10 4.01 4.90 5.76	2.32 3.33 4.30 5.26 6.19	2.48 3.55 4.60 5.61 6.61	2.86 4.11 5.32 6.49 7.65	3.09 4.43 5.74 7.02 8.28	3.25 4.66 6.03 7.38 8.70	3.69 5.31 6.88 8.42 9.92	4.00 5.74 7.45 9.11 10.75	4.30 6.18 8.01 9.80 11.56	5.11 7.36 9.55 11.68 13.79	5.49 7.89 10.24 12.53 14.79
700 800 900 1000 1200	3.17 3.55 3.94 4.31 5.05	3.92 4.40 4.88 5.36 6.29	4.66 5.25 5.82 6.39 7.52	5.15 5.80 6.44 7.08 8.33	5.64 6.36 7.06 7.76 9.13	6.14 6.91 7.68 8.44 9.94	6.63 7.47 8.30 9.12 10.75	7.11 8.02 8.91 9.79 11.54	7.59 8.56 9.52 10.47 12.34	8.80 9.92 11.04 12.14 14.31	9.52 10.74 11.94 13.14 15.49	9.99 11.27 12.54 13.80 16.28	11.42 12.89 14.34 15.77 18.60	12.36 13.95 15.52 17.08 20.15	13.30 15.01 16.70 18.38 21.68	15.86 17.91 19.93 21.93 25.86	17.02 19.21 21.38 23.52 27.74
1400 1600 1800 2000 2400	5.77 6.48 7.18 7.86 9.20	7.20 8.10 8.98 9.85 11.55	8.61 9.70 10.77 11.81 13.87	9.55 10.76 11.94 13.11 15.40	10.48 11.81 13.12 14.41 16.94	11.42 12.86 14.29 15.69 18.46	12.34 13.90 15.44 16.98 19.97	13.25 14.95 16.61 18.24 21.47	19.51	22.67	17.81 20.08 22.32 24.54 28.88	25.78	29.49	23.17 26.13 29.05 31.93 37.56	24.93 28.12 31.26 34.36 40.41	29.73 33.53 37.26 40.93 48.09	31.89 35.96 39.96 43.88 51.52
2800 3200 3500 4000 4500	10.51 11.78 12.71 14.24 15.72	13.21 14.82 16.02 17.97 19.87		17.65 19.84 21.45 24.09 26.67	19.40 21.83 23.60 26.51 29.35	25.73 28.91	22.89 25.75 27.85 31.29 34.64	29.96 33.66	26.33 29.63 32.05 36.00 39.85	37.23 41.80	33.12 37.25 40.28 45.22 49.99	39.13 42.31 47.48	39.77 44.70 48.31 54.14	52.24	46.27 51.96 56.11	55.00 61.65	58.87
5000 5500	17.17 18.58	21.72 23.53	26.22 28.41	29.18 31.63			37.90 41.08	40.75 44.15	43.58 47.20		54.60	57.28					

Further power values for other belt widths can be derived from multiplication with the width correction factors.

Permitted rated circumferential force $F_{N perm}$ with $n_k \leq 100 \text{ min}^{-1}$ and $z_k \geq 40$										
Width [mm]	12	21	36	62						
F _{N perm} [N]	2200	4000	7000	12 200						

Width correction factor				
Width [mm]	12	21	36	62
Factor	1.00	1.75	3.00	5.17

4 POWER RATINGS 4.2 optibelt DELTA CHAIN Carbon profile 14MDC

Table 4.2.1: Rated power for profile 14MDC width 20 mm

	Rated power P _N [kW]
Speed of small	Number of teeth on the small pulley z_k
timing belt pulley n _k [min ⁻¹]	Pitch diameter of the small timing belt pulley d _{wk} [mm]
	POWER VALUES optibelt DELTA CHAIN Carbon
	Further power values for other belt widths can be derived
	from multiplication with the width correction factors.
	Downing wated simulation for the former for the second state of th
Midth Inc.	Permitted rated circumferential force $F_{N perm}$ with $n_k \le 100 \text{ min}^{-1}$ and $z_k \ge 40$
Width [mm]	
F _{N perm} [N]	
	Width correction factor

Width correction factor				
Width [mm]				
Factor				

5 DESIGN HINTS 5.1 TIMING BELT PULLEYS / TENSION IDLERS

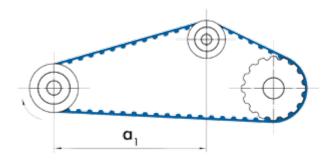
FLANGES

To guide Optibelt timing belts, timing belt pulleys should be equipped with flanges on one or both sides. For drive centre distances a > 8 d_w, the timing belt pulleys are to be equipped with flanges on both sides. We recommend the use of standard timing belt pulleys. If this is not possible for design reasons, corresponding special timing belt pulley designs can be used.

Small pulley with flanges on both sides

Flanges on alternate side

Both pulleys with flanges on both sides


MAXIMUM TIMING BELT WIDTH

The maximum timing belt width should not be larger than the diameter of the smallest timing belt pulley present in the drive.

TENSION IDLERS

Idlers are toothed or flat faced pulleys that do not transmit power within a drive system. Because they create additional bending stresses within the belt, they should be used according to the following guidelines:

- Diameter of the idlers ≥ the smallest permitted pulley according to the profile
- Width of the idlers \geq the timing belt pulleys present in the drive
- Always arrange idlers in the empty span
- Inside idlers: ≤ 40 teeth always use timing belt pulley, > 40 teeth flat faced pulley possible
- As outside idlers, flat faced pulleys are to be used in general, as they run on the top surface of the belt
- Flat faced pulleys must not be of spherical shape
- The idlers must be attached in such a way that as many teeth as possible are meshed
- The arc of contact at the idler must be kept as low as possible
- Minimum span width $\geq 2 \cdot \text{belt width}$

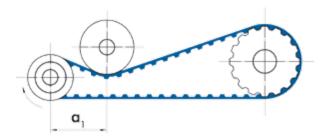


Figure 5.1.1: Arrangement of the inside tension idler

5 DESIGN HINTS 5.2 INSTALLATION AND MAINTENANCE

SAFETY INFORMATION

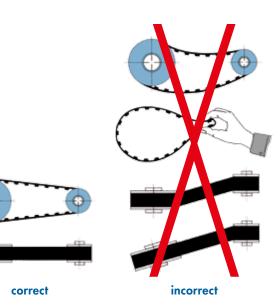
Geometrically correct designing and power rating of drives with Optibelt timing belts ensures high operating reliability and an optimum lifetime. Practice has shown that premature failure can very often be traced to faulty installation or maintenance.

To prevent this, we recommend that you observe the following instructions:

• TIMING BELT PULLEYS

The teeth must be manufactured according to standard and also be clean.

ALIGNMENT


Shafts and pulleys should be correctly aligned prior to belt installation.

Maximum deviations of shaft parallelism:

Belt width	Angular misalignment
≤ 25 > 25 ≤ 50 > 50 ≤ 100	± 1° ± 0.5° ± 0.25°
> 100 ≤	± 0.15°

• TIMING BELT SETS

Timing belts which run in pairs or groups on one drive must always be ordered as a set. This guarantees that all belts originate from the same batch and are identical in length.

INSTALLATION

Prior to installation, the drive centre distance must be reduced to enable the timing belt to be fitted easily. If this is not possible, the timing belt must be installed together with one or both timing belt pulleys. Forcing belts over the pulley flanges must be avoided as the damage this causes to the high-quality low-stretch tension members is often not visible. If taper bushes are used, the studs used should be checked after an operating time of 0.5 to 1 hour with the aid of a torque spanner.

TENSION

The tension must correspond to the guidelines in Chapter 3.6. Further inspections after installation are not necessary.

• TENSION IDLERS

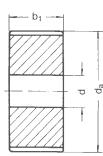
Tension idlers are to be avoided. If this is not possible, refer to the recommendations in Subchapter 5.1 of this manual.

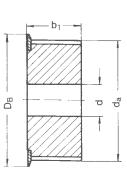
MAINTENANCE

Optibelt timing belts are maintenance-free if used under normal ambient conditions. If there is clearly visible wear on belts and/or pulleys, they should be replaced; see instructions in Subchapters 5.3 and 6.2.

5 DESIGN HINTS 5.3 PROBLEMS - CAUSES - REMEDIES

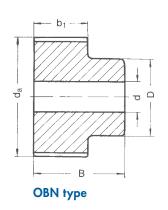
Problem	Cause	Remedy
Heavy wear on the loaded tooth faces of the belt	Belt undertensioned Incorrect pulley profile Pitch error	Correct the tension Check profile and replace, if necessary Use wider belts with higher transmission power
Excessive wear at base of tooth on belt	Excessive belt tension Drive under-dimensioned Faulty timing belt pulleys	Reduce tension Enlarge timing belts or pulleys Replace timing belt pulleys
Unusual wear on belt edges	Improper drive centre parallelism Faulty flanges Change of drive centre distance	Re-align the shafts Replace the flanges Reinforce bearing or housing
Belt teeth shearing off	Overloading Too few teeth in mesh Ambient temperature above 80°C	Increase diameter of small pulley or select wider belt Use wider belts or larger pulleys For ambient temperature above 80°C re-design with optibelt OMEGA HP EPDM -40°C/+140°C
Excessive lateral belt movement	Improper drive centre parallelism Timing belt pulleys are not aligned Impact loading with too high belt tension	Re-align the shafts Align the pulleys Reduce belt tension
Detachment of flanges	Timing belt pulleys not in line Very high lateral pressure of the timing belt Incorrect flange installation	Re-align the timing belt pulleys Re-align the shafts Install flanges correctly
Apparent belt stretch	Incorrect storage	Correct the belt tension, reinforce and secure bearing support
Excessive operating noise	Incorrect shaft alignment Belt tension too high Pulley diameter too small Overloading of timing belt Belt width too wide with high speed	Re-align the shafts Reduce the tension Increase pulley diameter Increase belt width or tooth meshing Reduce belt width by selecting larger belt types
Abnormal wear of timing belt pulleys	Unsuitable material Incorrect tooth meshing Insufficient surface hardness	Use stronger material Replace timing belt pulleys Use harder material or harden surface
Cracks on belt top surface	Ambient temperatures below –30 °C	Re-design with optibelt OMEGA HP EPDM –40°C / +140°C Provide heating for drive unit
Softening of the belt top surface	Influence of incompatible media	Shield from the media or use a suitable belt quality

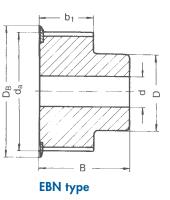

6 TOOTHED PULLEYS 6.1 MINIMUM PULLEY DIAMETER AND DESIGNS

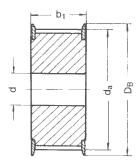


Do not use less than the recommended minimum number of teeth for pulleys, see Table 6.1.1. A pulley diameter that is smaller than the minimum pulley diameter may lead to a reduced operational reliability and an unsatisfactory operating time.

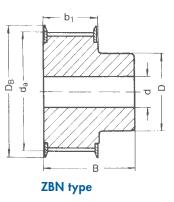
Table 6.1.1: Minimum number of teeth and minimum diameter


Profile	Minimum number of teeth	Minimum diameter [mm]
8MDC	22	56.02
14MDC	28	124.78





EB type


OB type

ZB type

MATERIALS

Steel, grey cast iron, aluminium; further materials on request For speeds > 30 m/s, do not use cast pulleys beyond this speed!

BORES

All timing belt pulleys are pilot bored.

On request they can be finish bored according to DIN H7.

EXPLANATION OF THE ABBREVIATIONS

- OB without flanges
- EB one flange
- ZB two flanges
- OBN without flanges, with hub
- EBN one flange, with hub
- ZBN two flanges, with hub

6 TOOTHED PULLEYS 6.2 DIMENSIONS AND TOLERANCES

PERMISSIBLE DEVIATION OF THE TOOTH SPACINGS

The permissible deviations in the tooth spacing between two consecutive teeth, and of the sum of deviations within a 90° arc, are indicated in the following table. These tolerances represent the spacing between the corresponding points on the right and left surfaces of consecutive teeth.

Outside diameter d _a [mm]	Permissible deviation of the tooth spacing [mm]	
[]	between two consecutive teeth	Sum within a 90° arc
> 50 ≤ 100	0.03	0.10
> 100 ≤ 175	0.03	0.13
> 175 ≤ 300	0.03	0.15
> 300 ≤ 500	0.03	0.18
> 500	0.03	0.20

Table 6.2.1: Permissible deviation of the tooth spacings

Table 6.2.2: Permissible deviation of the outside diameter

Outside diameter d _a [mm]	Permissible deviation [mm]
> 50 ≤ 100	+ 0.10 0
> 100 ≤ 175	+ 0.13 0
> 175 ≤ 300	+ 0.15 0
> 300 ≤ 500	+ 0.18 0
> 500	+ 0.20 0

The **optibelt DELTA CHAIN Carbon** high performance timing belts feature outstanding longitudinal stiffness due to the tension cord made of carbon fibres. Especially for drives with short drive centre distances or span lengths, and/or large belt widths, a reduction may be required in the permissible deviation specified for the outside diameter and the running tolerances. Tension force fluctuations and additional loads on bearings, shafts and the belt can be minimised in this way.

Table 6.2.3: Pulley width

Profile	Pulley width designation	For belt width [mm]	Smallest p with flanges b _f * [mm]	ulley width without flanges b [mm]
		[]	[]	[]
8MDC	12	12	14	18
	21	21	23	27
	36	36	38	42
	62	62	65	69
14MDC	20	20	23	27
	37	37	40	46
	68	68	71	77
	90	90	95	101
	125	125	130	136

*b_f = pulley width between the flanges

NOTE

The minimum width b for pulleys without flanges can be reduced, if the straight running of the drive can be adjusted. However, this must not be below the minimum width indicated for pulleys with flanges b_f.

Table 6.2.4: Side wobble tolerance

Outside diameter d _a	Maximum total
[mm]	variation [mm]
≤ 100	0.10
> 100	0.01 mm per 10 mm
≤ 250	outside diameter
> 250	0.25 mm + 0.0005 mm per mm outside diameter above 250.00 mm

Table 6.2.5: Run-out tolerance

Outside diameter d _a [mm]	Maximum total variation [mm]
≤ 200	0.10
> 200	0.0005 mm per 10 mm outside diameter, however not larger than the outside diameter tolerance

6 TOOTHED PULLEYS 6.2 DIMENSIONS AND TOLERANCES

Table 6.2.6: Static balancing

Steel pulleys machined on all sides must not be balanced if the circumferential speed is less than 30 m/s. Grey cast iron pulleys for medium speeds should be statically balanced as follows:

Profile	Number of teeth	Static balancing [N]
8MDC	≤ 130 > 130	0.08 0.16
14MDC	≤ 72 > 72	0.08 0.16

Timing belt pulleys that are used for a circumferential speed of more than 30 m/s must be dynamically balanced up to $1.8 \cdot 10^{-5}$ Nm.

PARALLELISM

The teeth should be parallel to the centre of the bore with a maximum deviation of 0.001 mm per millimetre of width.

CONICITY

The conicity must not be higher than 0.001 mm per millimetre of head width and must not exceed the permissible outside diameter tolerance.

6.3 TAPER BUSH RANGE

optibelt **TB** taper bushes

			Таре	er bushes	s with m	etric bor	es and k	eyways	to DIN 6	885 par	1					
												Material: EN-GJL-200 – DIN EN 1561				
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ [mm]	10 11 12 14 15 16 18 19 20 22 24 ▲ 25 ▲	10 11 12 14 15 16 18 19 20 22 24 25 28 ▲	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 ▲	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 ▲	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	14 16 18 19 20 24 25 28 30 32 35 38 40 42 45 48 50 55 60	25 28 30 32 35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 50 55 60 65 70 75	35 38 40 42 45 50 55 60 65 70 75 80 85 90	35 38 40 42 45 50 55 60 65 70 75 80 85 90	40 42 45 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 105 110 115 120 125
Hexagonal socket screws [in]	¹ / ₄ x ¹ / ₂	¹ / ₄ x ¹ / ₂	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	⁷ / ₁₆ x ⁷ / ₈	¹ / ₂ x 1	⁵ / ₈ x 1 ¹ / ₄	⁵ / ₈ x 1 ¹ / ₄	¹ / ₂ x 1 ¹ / ₂	¹ / ₂ x 1 ¹ / ₂	⁵ / ₈ x 1 ³ / ₄	³ / ₄ x 2	$^{7}/_{8} \times 2^{1}/_{4}$
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight at d _{2 min} [kg]	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

Over 3525: Cap head screw with hexagonal socket A This bore has shallow keyways.

Shallow keyways for taper bushes

Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]	Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]
24	8	2.0	28	8	2.0
25	8	1.3	42	12	2.2

		T	aper bu	shes with	n inch bo	ores and	keyway	to Britis	n Standa	ard BS 46	o part 1					
							Tape	r bush				Mate	rial: EN-	GJL-200	– DIN EN	V 1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ [in]	3/8* 1/2 5/8 3/4 7/8 1▲	3/8* 1/2 5/8 3/4 7/8 1 11/8▲*	¹ / ₂ 5/8 3/4 7/8 1 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 1/8 1 ¹ /8 1 ¹ /4 1 ³ /8	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8	1/2 5/8 3/4 7/8* 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8▲*	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2	³ /4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2 ¹ /8 2 ¹ /4 2 ³ /8 2 ¹ /2	$\begin{array}{c}1^{1}/_{4}\\1^{3}/_{8}\\1^{1}/_{2}\\1^{5}/_{8}\\1^{3}/_{4}^{*}\\1^{7}/_{8}\\2^{1}/_{4}\\2^{3}/_{8}\\2^{1}/_{2}\\2^{5}/_{8}\\2^{3}/_{4}\\2^{7}/_{8}\\3\end{array}$	$\begin{array}{c}1^{1}/4\\1^{3}/8\\1^{1}/2\\1^{5}/8\\1^{3}/4^{*}\\1^{7}/8\\2\\2^{1}/8^{*}\\2^{1}/4\\2^{3}/8\\2^{1}/2\\2^{5}/8^{*}\\2^{3}/4^{*}\\2^{7}/8\\3\end{array}$	$\begin{array}{c}1^{1}/_{2}\\1^{5}/_{8}\\1^{3}/_{4}\\1^{7}/_{8}\\2\\1^{1}/_{8}\\2^{1}/_{4}\\2^{3}/_{8}\\2^{1}/_{2}\\2^{5}/_{8}\\2^{3}/_{4}\\2^{7}/_{8}\\3^{1}/_{4}\\3^{3}/_{8}\\3^{1}/_{2} \blacktriangle$	$\begin{array}{c} 1^{1}/2 \\ 1^{5}/8 \\ 1^{3}/4 \\ 1^{7}/8 \\ 2 \\ 2^{1}/8 \\ 2^{1}/4 \\ 2^{3}/8 \\ 2^{1}/2 \\ 2^{5}/8 \\ 3 \\ 3^{1}/8 \\ 3^{1}/4 \\ 3^{3}/8 \\ 3^{1}/2 \\ \end{array}$	$\begin{array}{c} 1^{3}/4^{*} \\ 1^{7}/8^{*} \\ 2^{*} \\ 2^{1}/8^{*} \\ 2^{1}/4^{*} \\ 2^{3}/8^{*} \\ 2^{1}/2^{*} \\ 2^{5}/8^{*} \\ 2^{3}/4^{*} \\ 2^{7}/8^{*} \\ 3^{1}/8^{*} \\ 3^{1}/4^{*} \\ 3^{3}/6^{*} \\ 3^{3}/4^{*} \\ 4^{*} \end{array}$	$\frac{2^{1}/4^{*}}{2^{3}/8^{*}}$ $\frac{2^{1}/2^{*}}{2^{3}/4^{*}}$ $\frac{2^{7}/8^{*}}{3^{*}}$ $\frac{3^{1}/4^{*}}{3^{3}/8^{*}}$ $\frac{3^{1}/2^{*}}{3^{3}/4^{*}}$ $\frac{4^{1}}{4^{1}/2^{*}}$	$3^* \\ 3^{1/4^*} \\ 3^{1/2^*} \\ 3^{3/4^*} \\ 4^{1/4^*} \\ 4^{1/4^*} \\ 4^{3/4^*} \\ 5^{*} $
Hexagon socket screws [in]	¹ / ₄ x ¹ / ₂	¹ / ₄ x ¹ / ₂	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	³ / ₈ x ⁵ / ₈	⁷ / ₁₆ x ⁷ / ₈	¹ / ₂ x 1	⁵ / ₈ x 1 ¹ / ₄	⁵ / ₈ x 1 ¹ / ₄	¹ / ₂ x 1 ¹ / ₂	¹ / ₂ x 1 ¹ / ₂	⁵ / ₈ x 1 ³ / ₄	³ / ₄ x 2	⁷ / ₈ x 2 ¹ / ₄
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight at d _{2 min} [kg]	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

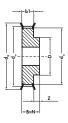
Over 3525: Cap head screw with hexagonal socket * Non-stock items A This bore has a shallow keyway.

6 TOOTHED PULLEYS 6.4 TOOTHED PULLEY RANGE

optibelt ZRS DC toothed pulleys profile 8MDC for optibelt TB taper bushes

	+b1+			gg			-8-b1		=b1- 					
Type 2F	Type 2		Туре	3F	Туре б	F	Туре б	Ту	pe 7	Туре	8	Туре	9	Type 10
Designation	Num- ber of teeth	De- sign	Mate- rial	d _w [mm]	da [mm]	D _B [mm]	bı [mm]	B [mm]	N [mm]	D [mm]	D _i [mm]	N [mm]	Taper bush	Weight of bush approx. [kg]
							belt widtl							
8MDC 12 TB 25	25	2F	ST	63.66	62.06	70.0	20.0	22.0	22.0	49	-	-	1108	0.30
8MDC 12 TB 28	28	2F	ST	71.30	69.70	75.0	20.0	22.0	22.0	59	-	-	1108	0.40
8MDC 12 TB 30	30	2F	ST	76.39	74.79	82.5	20.0	25.0	25.0	60	-	-	1210	0.40
8MDC 12 TB 32	32	2F	ST	81.49	79.89	86.0	20.0	25.0	25.0	66	-	-	1610	0.40
8MDC 12 TB 34	34	2F	ST	86.58	84.98	91.0	20.0	25.0	25.0	69	-	-	1610	0.50
8MDC 12 TB 36	36	2F	ST	91.67	90.07	97.0	20.0	25.0	25.0	76	-	-	1610	0.60
8MDC 12 TB 38	38	2F	ST	96.77	95.17	102.0	20.0	25.0	25.0	78	-	-	1610	0.70
8MDC 12 TB 40	40	2F	ST	101.86	100.26	106.0	20.0	25.0	25.0	85	-	-	1610	0.90
8MDC 12 TB 45	45	2F	ST	114.59	112.99	120.0	20.0	32.0	32.0	92	-	-	2012	1.10
8MDC 12 TB 48	48	2F	ST	122.23	120.63	128.0	20.0	32.0	32.0	103	-	-	2012	1.50
8MDC 12 TB 50	50	2F	ST	127.32	125.72	135.0	20.0	32.0	32.0	104	-	-	2012	1.60
8MDC 12 TB 56	56	2F	ST	142.60	141.00	150.0	20.0	32.0	32.0	104	-	-	2012	2.10
8MDC 12 TB 60	60	2F	ST	152.79	151.19	158.0	20.0	32.0	32.0	111	-	-	2012	2.40
8MDC 12 TB 64	64	2F	ST	162.97	161.37	168.0	20.0	32.0	32.0	111	-	-	2012	2.70
8MDC 12 TB 75	75	2	GG	190.99	189.39	-	20.0	32.0	32.0	111	-	-	2012	4.60
8MDC 12 TB 80	80	2	GG	203.72	202.12	-	20.0	32.0	32.0	111	-	-	2012	5.10
8MDC 12 TB 90	90	2	GG	229,18	227.58	-	20.0	-	-	111	-	-	2012	6.40
						C – for b	elt width							
8MDC 21 TB 25	25	3F	ST	63.66	62.06	70.0	30.0	30.0	22.0	-	-	8.0	1108	0.40
8MDC 21 TB 28	28	3F	ST	71.30	69.70	75.0	30.0	30.0	25.0	-	-	5.0	1210	0.40
8MDC 21 TB 30	30	3F	ST	76.39	74.79	82.5	30.0	30.0	25.0	-	-	5.0	1210	0.60
8MDC 21 TB 32	32	3F	ST	81.49	79.89	86.0	30.0	30.0	25.0	-	-	5.0	1610	0.50
8MDC 21 TB 34	34	3F	ST	86.58	84.98	91.0	30.0	30.0	25.0	-	-	5.0	1610	0.60
8MDC 21 TB 36	36	3F	ST	91.67	90.07	97.0	30.0	30.0	25.0	-	-	5.0	1610	0.70
8MDC 21 TB 38	38	3F	ST	96.77	95.17	102.0	30.0	30.0	25.0	-	-	5.0	1610	1.00
8MDC 21 TB 40	40	3F	ST	101.86	100.26	106.0	30.0	30.0	25.0	-	-	5.0	1610	1.10
8MDC 21 TB 45	45	2F	ST	114.59	112.99	120.0	30.0	32.0	32.0	92	-	-	2012	1.30
8MDC 21 TB 48	48	2F	ST	122.23	120.63	128.0	30.0	32.0	32.0	103	-	-	2012	1.60
8MDC 21 TB 50	50	2F	ST	127.32	125.72	135.0	30.0	32.0	32.0	104	-	-	2012	1.90
8MDC 21 TB 56	56	2F	ST	142.60	141.00	150.0	30.0	32.0	32.0	111	-	-	2012	2.40
8MDC 21 TB 60	60	2F	ST	152.79	151.19	158.0	30.0	45.0	45.0	124	-	-	2517	3.20
8MDC 21 TB 64	64	2F	ST	162.97	161.37	168.0	30.0	45.0	45.0	124	-	-	2517	3.80
8MDC 21 TB 75	75	2	GG	190.99	189.39	-	30.0	45.0	45.0	124	-	-	2517	6.80
8MDC 21 TB 80	80	2	GG	203.72	202.12	-	30.0	45.0	45.0	124	-	-	2517	7.60

6 TOOTHED PULLEYS 6.4 TOOTHED PULLEY RANGE


optibelt ZRS DC toothed pulleys profile 8MDC for optibelt TB taper bushes

														Weight
Designation	Num- ber of	De- sign	Mate- rial	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	N [mm]	D [mm]	D _i [mm]	N [mm]	Taper bush	of bush approx.
	teeth	5.g.i		[]	[]	[]	[]	[]	[]	[]	[]	[]		[kg]
8MDC 21 TB 90	90	9	GG	229.18	227.58	-	30.0	45.0	45.0	124	198	7.5	2517	8.60
8MDC 21 TB 112	112	9	GG	285.21	283.61	-	30.0	45.0	45.0	124	253	7.5	2517	12.50
8MDC 21 TB 140	140	10	GG	356.51	354.91	-	30.0	51.0	51.0	150	324	10.5	3020	12.80
					8MD	C – for b	elt widt	n 36						
8MDC 36 TB 28	28	3F	ST	71.30	69.70	75.0	45.0	45.0	25.0	-	-	20.0	1210	0.70
8MDC 36 TB 30	30	3F	ST	76.39	74.79	82.5	45.0	45.0	25.0	-	-	20.0	1610	0.60
8MDC 36 TB 32	32	3F	ST	81.49	79.89	86.0	45.0	45.0	25.0	-	-	20.0	1610	0.80
8MDC 36 TB 34	34	3F	ST	86.58	84.98	91.0	45.0	45.0	25.0	-	-	20.0	1610	1.00
8MDC 36 TB 36	36	3F	ST	91.67	90.07	97.0	45.0	45.0	25.0	-	-	20.0	1610	1.20
8MDC 36 TB 38	38	3F	ST	96.77	95.17	102.0	45.0	45.0	25.0	-	-	20.0	1610	1.40
8MDC 36 TB 40	40	3F	ST	101.86	100.26	106.0	45.0	45.0	32.0	-	-	13.0	2012	1.40
8MDC 36 TB 45	45	3F	ST	114.59	112.99	120.0	45.0	45.0	32.0	-	-	13.0	2012	1.90
8MDC 36 TB 48	48	3F	ST	122.23	120.63	128.0	45.0	45.0	32.0	-	-	13.0	2012	2.20
8MDC 36 TB 50	50	3F	ST	127.32	125.72	135.0	45.0	45.0	32.0	-	-	13.0	2012	2.70
8MDC 36 TB 56	56	3F	ST	142.60	141.00	150.0	45.0	45.0	45.0	-	-	-	2517	3.00
8MDC 36 TB 60	60	3F	ST	152.79	151.19	158.0	45.0	45.0	45.0	-	-	-	2517	3.80
8MDC 36 TB 64	64	3F	ST	162.97	161.37	168.0	45.0	45.0	45.0	-	-	-	2517	4.50
8MDC 36 TB 75	75	2	GG	190.99	189.39	-	45.0	51.0	51.0	150	-	-	3020	8.70
8MDC 36 TB 80	80	2	GG	203.72	202.12	-	45.0	51.0	51.0	150	-	-	3020	10.00
8MDC 36 TB 90	90	9	GG	229,18	227.58	-	45.0	51.0	51.0	150	197	3.0	3020	10.40
8MDC 36 TB 112	112	9	GG	285.21	283.61	-	45.0	51.0	51.0	150	253	3.0	3020	14.00
8MDC 36 TB 140	140	10	GG	356.51	354.91	-	45.0	51.0	51.0	150	324	3.0	3020	12.00
8MDC 36 TB 168	168	10	GG	427.81	426.21	-	45.0	65.0	65.0	198	396	10.0	3525	23.90
8MDC 36 TB 192	192	10	GG	488.92	487.32	-	45.0	65.0	65.0	198	457	10.0	3525	26.60
					8MD	C – for b	elt widtl	n 62						
8MDC 62 TB 40	40	3F	ST	101.86	100.26	106.0	72.0	72.0	32.0	-	-	40.0	2012	2.10
8MDC 62 TB 45	45	3F	ST	114.59	112.99	120.0	72.0	72.0	32.0	-	-	40.0	2012	3.30
8MDC 62 TB 48	48	3F	ST	122.23	120.63	128.0	72.0	72.0	45.0	-	-	27.0	2517	3.90
8MDC 62 TB 50	50	3F	ST	127.32	125.72	135.0	72.0	72.0	45.0	-	-	27.0	2517	4.70
8MDC 62 TB 56	56	6F	ST	142.60	141.00	150.0	72.0	45.0	45.0	-	111	13.5	2517	5.50
8MDC 62 TB 60	60	6F	ST	152.79	151.19	158.0	72.0	45.0	45.0	-	121	13.5	2517	6.40
8MDC 62 TB 64	64	6F	ST	162.97	161.37	168.0	72.0	45.0	45.0	-	131	13.5	2517	7.20
8MDC 62 TB 75	75	6	GG	190.99	189.39	-	72.0	72.0	51.0	-	159	10.5	3020	10.00
8MDC 62 TB 80	80	6	GG	203.72	202.12	-	72.0	72.0	51.0	-	172	10.5	3020	11.50
8MDC 62 TB 90	90	6	GG	229,18	227.58	-	72.0	72.0	51.0	-	197	10.5	3020	15.00
8MDC 62 TB 112	112	7	GG	285.21	283.61	-	72.0	72.0	51.0	150	253	10.5	3020	15.00
8MDC 62 TB 140	140	7	GG	356.51	354.91	-	72.0	72.0	65.0	198	324	3.5	3525	24.80
8MDC 62 TB 168	168	8	GG	427.81	426.21	-	72.0	72.0	65.0	198	396	3.5	3525	28.40
8MDC 62 TB 192	192	8	GG	488.92	487.32	-	72.0	72.0	65.0	198	457	3.5	3525	32.20
Taper bush		1008		1108		1210	1	1610	20	12		ey cast iron erve the rig		l specifications
Bore d ₂ from to	D	10-25		10-28		11-32	1	4-42	14-	50	without Bore dic	notice. 1meter d ₂ s	ee Subcha	pter 6.3.

6 TOOTHED PULLEYS 6.4 TOOTHED PULLEY RANGE

optibelt ZRS DC toothed pulleys profile 8MDC for cylindrical bore

Type 1F

Designation	Number of teeth	De- sign	Material	d _w [mm]	d _a [mm]	D _B [mm]	b ₁ [mm]	B [mm]	S [mm]	D [mm]	Weight approx. [kg]
				8MD	C – for bel	t width 12					
8MDC 12 22	22	1F	ST	56.02	54.42	62.0	20.0	30.0	30.0	43	0.50
				8MD	C – for bel	t width 21					
8MDC 21 22	22	1F	ST	56.02	54.42	62.0	30.0	40.0	40.0	43	0.60
				8MD	C – for bel	width 36					
8MDC 36 25	25	1F	ST	63.66	62.06	70.0	45.0	55.0	55.0	49	1.10
				8MD	C – for bel	width 62					
8MDC 62 30	30	1F	ST	76.39	74.79	86.0	72.0	84.0	84.0	65	2.50
8MDC 62 32	32	1F	ST	81.49	79.89	90.0	72.0	84.0	84.0	69	2.80
8MDC 62 34	34	1F	ST	86.58	84.98	95.0	72.0	84.0	84.0	74	3.00
8MDC 62 36	36	1F	ST	91.67	90.07	98.0	72.0	84.0	84.0	77	3.40
8MDC 62 38	38	1F	ST	96.77	95.17	106.0	72.0	84.0	84.0	84	3.80

ST: Steel We reserve the right to alter specifications without notice.

optibelt ZRS DC toothed pulleys profile 14MDC for optibelt TB taper bushes

RANGE OF optibelt ZRS DC TOOTHED PULLEYS WITH PROFILE 14MDC UNDER DEVELOPMENT

optibelt ZRS DC toothed pulleys with profile 14MDC for optibelt TB taper bushes

RANGE OF optibelt ZRS DC TOOTHED PULLEYS WITH PROFILE 14MDC UNDER DEVELOPMENT

optibelt ZRS DC toothed pulleys with profile 14MDC for cylindrical bore

RANGE OF optibelt ZRS DC TOOTHED PULLEYS WITH PROFILE 14MDC UNDER DEVELOPMENT

7. GENERAL INFORMATION 7.1 OVERVIEW OF STANDARDS

- Narrow V-Belt Drives for the Automotive Industry;

Classical V-Belts and Narrow V-Belts; Lengths
 Synchronous Belt Drives; Belt Tooth Pitch Code

- Narrow V-Belt Drives for the Automotive Industry;

Grooved Pulleys for Joined Narrow V-Belts;

- Grooved Pulleys for Joined Classical V-Belts;

Part 1 MXL; XL; L; H; XH; XXH Part 2 MXL; XXL Metric Dimensions

- Vocabulary from Timing Belt Drives

Profiles: 9J; 15J; 20J; 25J

Data and Centre Distance

Centre Distance – "Inch Pitch"

System; 9N/J, 15N/J, 25N/J

Automotive Industry; PK Profile

- Synchronous Belt Drives - Automotive Belts

- Synchronous Belt Drives - Automotive Pulleys

Antistatic Endless Synchronous Belts; Electrical Conductibility; Characteristics and Testing Method

- Belt Drives; V-Belt Pulleys, Geometric Inspection of

Belt Drives – Pulleys and V-Ribbed Belts for the

 Belt Drives; Pulleys and V-Ribbed Belts for Industrial Requirements; Geometric Data PH, PJ, PK, PL, PM

- Belt Drives - V-Ribbed Belts for the Automotive Industry,

Synchronous Belt Drives - Automotive Belts - Physical

Profiles: AJ; BJ; CJ; DJ

V-Ribbed Belts

Grooves

Fatigue Testing

Characteristics

- Endless Speed Changer Belts and Pulleys for Agricultural

- Grooved Pulleys for Classical V-Belts and Narrow V-Belts

- Endless Double Profile V-Belts and Pulleys for Agricultural

Industrial V-Belt Drives; Calculations of the Performance

- Timing Belts; Calculations of the Performance Data and

- Dynamic Test to Determine Pitch Zone Location with V-Belts

- Dynamic Test to Determine Pitch Zone Location with

- Belt Drives; Joined Narrow V-Belts; Lengths in Effective

Dimensions

Machinery

Fatigue Test

Machinery

Federal Republic of Germany

DIN 109 Sheet 1 – Drive Elements; Circumferential Speeds	ISO 3410
DIN 109 Sheet 2 – Drive Elements; Centre Distances for V-Belt Drives	
DIN 111 – Pulleys for Flat Transmission Belts; Dimensions, Nominal	ISO 4183
Torques	ISO 4184
DIN 111 Sheet 2 – Pulleys for Flat Transmission Belts; Classification for	ISO 5256
Electrical Machines	
DIN 2211 Sheet 1 – Grooved Pulleys for Narrow V-Belts; Dimensions,	
Materials	ISO 5287
DIN 2211 Sheet 2 – Grooved Pulleys for Narrow V-Belts; Inspections of	100 5207
Grooves	ISO 5288
DIN 2211 Sheet 3 – Grooved Pulleys for Narrow V-Belts; Classification for	ISO 5288
Electrical Machines	130 3209
	100 5000
DIN 2215 – Endless V-Belts, Classical Profiles; Minimum Datum	ISO 5290
Diameter of the Pulleys, Internal and Datum Belt Length	
DIN 2216 – Open-Ended V-Belts; Dimensions	ISO 5291
DIN 2217 Sheet 1 – V-Belt Pulleys for Classical Profiles; Dimensions, Materials	
DIN 2217 Sheet 2 – V-Belt Pulleys for Classical Profiles; Inspections of	ISO 5292
Grooves	
DIN 2218 – Endless V-Belts, Classic Profiles for Mechanical	ISO 5295
Engineering; Calculation of Drives, Performance Data	
DIN 7716 – Rubber Products; Requirements for Storage, Cleaning	ISO 8370-1
and Maintenance	ISO 8370-2
DIN 7719 Part 1 – Endless Wide V-Belts for Industrial Speed Changers;	
Belts and Groove Profiles for Corresponding Pulleys	ISO/DIS 8419
DIN 7719 Part 2 – Endless Wide V-Belts for Industrial Speed Changers;	
Measurement of Centre Distance Variations	ISO 9010
DIN 7721 Part 1 – Synchronous Belt Drives, Metric Pitch;	ISO 9011
Synchronous Belts	ISO 9563
DIN 7721 Part 2 – Synchronous Belt Drives, Metric Pitch;	100 /000
Tooth Space Profile of Synchronous Pulleys	ISO 9980
DIN 7722 – Endless Hexagonal Belts for Agricultural Machines and	100 7700
Groove Profiles of Corresponding Pulleys	ISO 9981
DIN 7753 Part 1 – Endless Narrow V-Belts for Mechanical Engineering;	130 9901
Diny 7753 Part 1 – Engliss Narrow V-Bells for Mechanical Engineering; Dimensions	
	ISO 9982
DIN 7753 Part 2 – Endless Narrow V-Belts for Mechanical Engineering;	100 117/0
Drive Calculation, Performance Data	ISO 11749
DIN 7753 Part 3 – Endless Narrow V-Belts for the Automotive Industry;	
Dimensions	ISO 12046
DIN 7753 Part 4 – Endless Narrow V-Belts for the Automotive Industry;	
Fatigue Testing	ISO 13050
DIN 7867 – V-Ribbed Belts and Pulleys	
DIN/ISO 5290 – Grooved Pulleys for Joined Narrow V-Belts;	ISO 17396
Groove Profiles 9J; 15J; 20J; 25J	
DIN 22100-7 – Articles from Synthetics for Use in Underground Mines,	ISO 19347
Paragraph 5.4 – V-Belts	
DIN EN 60695-11-10	

Fire Hazard Testing

ISO 13050 – Synchronous Belt Drives – Metric Pitch, Curvilinear Profile Systems G, H, R and S, Belts and Pulleys ISO 17396 – Synchronous Belt Drives – Metric Pitch, Trapezoidal Profile Systems T and AT, Belts and Pulleys Mines, ISO 19347 – Synchronous belt drives -- Imperial pitch trapezoidal profile system -- Belts and pulleys

ISO 2790

ISO – International Organization for Standardization USA

ISO 22	 Widths of Flat Transmission Belts and Corresponding Pulleys
ISO 63	– Flat Belt Drives; Lengths
ISO 99	 Diameter of the Belt Pulleys for Flat Belts
ISO 100	 Bulging Height of the Belt Pulleys for Flat Belts
ISO 155	 Belt Pulleys; Limiting Values for Adjustment of Centre
	Distances
ISO 254	 Quality, Finish and Balance of Belt Pulleys
ISO 255	 Pulleys for Classical V-Belts and Narrow V-Belts; Geometric Testing of Grooves
ISO 1081	 Vocabulary from V-Belts, V-Ribbed Belts and Pulleys
ISO 1604	 Endless Speed Changer Belts and Pulleys for Mechanical Engineering
ISO 1813	 Electrical Conductivity of V-Belts, Kraftbands, V-Ribbed Belts, Wide V-Belts and Double Profile V-Belts
ISO 2230	– Please Consult DIN 7716

ng RMA/ARPM IP-20 – Classical V-Belts and Sheaves (A; B; C; D; Cross Profiles)

KINA/AKI IN 11-20	_	
		(A; B; C; D; Cross Profiles)
RMA/ARPM IP-21	_	Double (Hexagonal) Belts (AA; BB; CC; DD Cross
		Profiles)
RMA/ARPM IP-22	_	Narrow Multiple V-Belts (3V; 5V; and 8V Cross Profiles)
RMA/ARPM IP-23	_	Single V-Belts (2L; 3L; 4L; and 5L Cross Profiles)
RMA/ARPM IP-24	_	Synchronous Belts (MXL; XL; L; H; XH; and XXH Belt
		Profiles)
RMA/ARPM IP-25	_	Variable Speed V-Belts (12 Cross Profiles)
RMA/ARPM IP-26	_	V-Ribbed Belts (PH; PJ; PK; PL; and PM Cross Profiles)
RMA/ARPM IP-27	_	Curvilinear Toothed Synchronous Belts
		(8M – 14M Pitches)
ASAE S 211	_	V-Belt Drives for Agricultural Machines
SAE J636b	_	V-Belts and Pulleys
SAE J637	_	Automotive V-Belt Drives

7. GENERAL INFORMATION 7.2 DATA SHEET FOR CALCULATION / CHECKING OF TIMING BELT DRIVES

		Company:			
		Street address/P.O. Bc	ox number:		
		Town or city/Post code	e:		
		Contact person:			
		Department:		Date:	
		Phone:		Fax:	
				E-mail:	
		Currently fitted with:			
For test	New drive	pitch length	profile	width	manufacturer
For pilot production	Existing drive Requirement Pieces/year				

DRIVEN MACHINE

PRIME MOVER

Type (e.g. electric motor, diesel engine 3 cylinders)	Type (e.g. lathe, compressor)	
Size of the starting torque (e.g. MA = 1.8 MN)	Start: under load no load	
Type of start (e.g. star delta)		
Daily operating time hours	Type of load: steady pulsating	
Number of starts per hour per day	shock	
Change in the direction of rotation per minute per hour		
Power: P normalkW	Required power: P normal	_kW
P maximumkW	P maximal	kW
or max. torque Nm at n1 min ⁻¹	or max. torque Nm at n ₂	min ⁻¹
Speed of driver pulley n1 min ⁻¹	Driven speed n ₂	min ⁻¹
Shaft layout: horizontal vertical	n _{2 min}	min ⁻¹
inclined □ ≮°	n _{2 max}	min ⁻¹
Maximum allowed static shaft loading $S_{a\;max}$ N	Maximum allowed shaft loading S _{a max}	N
Pitch diameter or number of teeth on the pulley:	Pitch diameter or number of teeth on the pulley:	
d _{w1} mm z ₁ mm	d _{w2} mm z ₂	mm
d _{w1 min} mm z _{1 min} mm	d _{w2 min} mm z _{2 min}	mm
d _{w1 max} mm z _{1 max} mm	d _{w2 max} mm z _{2 max}	mm
Maximum pulley face widthmm	Maximum pulley face width	mm
Speed ratio i	i _{min} i _{max}	
Drive centre distance a mm	a _{min} mm a _{max} mm	
Tension/guide idler pulley: inside idler	in drive slack side	
outside idler	in drive tigth side	
d _w mm pulley	moveable (e.g. spring loaded)	
d _a mm flat pulley	fixed	
Operating conditions Ambient temperature	°C/F minimum	
	°C/F max.	
Influence of oil	(e.g. oil mist, drops)	
water	(e.g. spray water)	
acid	(type, concentration, temperature)	
dust	(type)	

Special drives: e.g. for drives with inside or outside tensioning/idler pulleys, three or more multi-pulley drives or for drives with contra-rotating pulleys drawings are necessary. Please use the other side of this page for these drawings.

NOTES

NOTES

Owner of any and all copyrights and intellectual property rights as well as other rights of use and exploitation: Arntz Optibelt Group, Höxter, Germany. Any use, exploitation, reproduction, and any transfer to third parties by any means shall require the prior written approval of the Arntz Optibelt Group, Höxter, Germany. Any infringement will be prosecuted under the copyright act law.

The products on offer provided by Optibelt are exclusively oriented towards specialised trade and not towards the consumer. Optibelt recommends that its products are to be exclusively used in accordance with the information provided in Optibelt documentation. The use of Optibelt products in aeroplanes or aviation systems, products and/or applications is not permitted. If in doubt, consult Optibelt before using any Optibelt products. Optibelt does not accept any liability for the use of Optibelt products in systems, products and/or applications for which they were not designed and/or manufactured. This is particularly, but not exclusively, the case if Optibelt products are to be used outside of any specific agreement with Optibelt in circumstances which are unusual or which present a particular risk to health, safety or the environment, or which require a more demanding use.

Errors and omissions excepted. Optibelt does not accept any liability for the correctness or completeness of the information supplied by Optibelt or for the suitability of the information for use by the recipient of the information. Optibelt does not therefore, as far as permitted by law, accept liability for damage resulting outside of any specific agreement with Optibelt from the use of the information or the assumption that the information is correct and complete.

The general terms and conditions of sale of Optibelt GmbH, Höxter, Germany, in particular the agreements relating to retention of title, including in their longer and extended form, shall apply exclusively. These terms and conditions can be obtained free of charge by visiting http://www.optibelt.de/agb/de. Optibelt shall not accept any of the customer's own terms and conditions that are contrary to or deviate from these terms and conditions, even if Optibelt does not explicitly object to them or unconditionally renders performance or accepts the performance by the customer irrespective of the customer's conflicting or differing terms of business.

Print: 0219

Optibelt GmbH Corveyer Allee 15 37671 Höxter GERMANY

T +49 5271 621 **F** +49 5271 976200 **E** info@optibelt.com

optibelt /

www.optibelt.com